
Rails Beginner Cheat Sheet

Console

 Ruby

General Concepts

Numbers

Strings

Arrays

Hashes

 Rails

Folder Structure

Commands

Editor Tips

Help

Resources

About

Cheat Sheet Conventions
Bold words are what is really important e.g. the command and concept shown in the usage category. In the code

usage and example columns these highlight the main part of the concept, like this: ���������	
������	 . In the

same columns �	��������� mark the arguments/parameters of a command/method.

However italic words in the descriptions or general text denote more general concepts or concepts explained

elsewhere in this cheat sheet or in general.

Console Basics
The console (also called command line, command prompt or terminal) is just another way of interacting with your

computer. So you can basically do anything with it that you could also do with your graphical desktop user interface.

This sections contains a couple of examples.

For the different operating systems starting the console differs.

Windows: Open the start menu and search for command prompt. Alternatively choose execute and enter cmd.

Mac: Open Spotlight, type terminal, and start that program.

Linux: The terminal should be one of the main options once you open the main menu of your distribution.

Otherwise search for terminal if your distribution has such an option or look under Accessories.

Concept Usage Examples Description

�������������������	�����	 �		������������	��������������������������	����	���

������� !� !�" �#� "�#$�%&

Change

directory

� ����	��' ��('����

��('��������

���	�������

Changes the directory to the specified directory on the

console.

List

contents

directory

�� ����	��'

)�������

��� ����	��'

��

�� ('����

Shows all contents (files and folders) of the directory. If no

directory is specified shows the contents of the current

directory.

Directory

you are

currently in

��� ��� Shows the full path of the directory you are currently in. E.g.

/home/tobi/railsgirls

A note on filenames: if a file or directory name starts with a

slash / as in the output of pwd above, it is an absolute filename

specifying the complete filename starting at the root of the

current file system (e.g. hard disk). If the slash (/) is ommitted,

the file name is relative to the current working directory.

Create a

new

directory

(*��� ��(� (*��� �����

(*��� �
�

Creates a directory with the given name in the folder you are

currently in.

Delete a file �(+��

)�������

��� +��

�(���

�(����,��	(�

�(

��	
����������	
���-��

Deletes the specified file. Be extra cautious with this as it

would be too bad to delete something you still need :-(

You can simply specify the name of a file of the directory you

are currently in. However you can also specify a path, this is

shown in the third example. There we delete the

old_picture.jpg file from the pictures folder.

Delete a

directory

�(��� ������

)�������

�� ������

�(��� �	
�������	�����

�(��� �	
�������	������

�(��� ����������	���

Deletes the specified folder and all of its contents. So please

be super cautious with this! Make sure that you do not need

any of the contents of this folder any more.

So why would you want to delete a whole folder? Well maybe

it was an old application that you do not need anymore :-)

Starting a

program

������(

���
(��	�

+����,

+����,

�������������������

���

Starts the program with the given name and arbitrary

arguments if the program takes arguments. Firefox is just one

example. Starting Firefox without arguments just opens up

Firefox. If you give it an argument it opens the specified URL.

When you type in ��� this starts interactive ruby.

�������������������	�����	 �		������������	��������������������������	����	���

"������ !� !�" �#� "�#$�%&

Abort the

program

Press Ctrl + C - This will abort the program currently running in the terminal.

For instance this is used to shut down the Rails server. You

can also abort many other related tasks with it, including:

bundle install, rake db:migrate, git pull and many more!

Ruby Basics
Ruby is the programming language Ruby on Rails is written in. So most of the time you will be writing Ruby code.

Therefore it is good to grasp the basics of Ruby. If you just want to play with Ruby, type irb into your console to start

interactive ruby. There you can easily experiment with Ruby. To leave irb, type exit.

This is just a very small selection of concepts. This is especially true later on when we talk about what Arrays,

Strings etc. can do. For more complete information have a look at ruby-doc or search with your favorite search

engine!

General concepts

Concept Usage Examples Description

Comment . ��((��	�	�,	 . /����	�,	�������((��	

��(���
�'�����.�0��((��	

.���(�����������
�'����

Ruby ignores everything that is

marked as a comment. It does not try

to execute it. Comments are just there

for you as information. Comments are

also commonly used to comment out

code. That is when you don't want

some part of your code to execute but

you don't want to delete it just yet,

because you are trying different things

out.

Variables 1��������2 ��(��1��
� ��(��2 3/���3

��(��.�24�3/���3

�
(�2 �5�6�7

�
(�.�24�"�

With a variable you tell Ruby that from

now on you want to refer to that value

by the name you gave it. So for the

first example, from now on when you

use name Ruby will know that you

meant "Tobi".

Console

output

�
	� ��(�	���� �
	� 38�����)����3

�
	� 9�:�7:�3(���3;

Prints its argument to the console.

Can be used in Rails apps to print

something in the console where the

server is running.

�������������������	�����	 �		������������	��������������������������	����	���

������� !� !�" �#� "�#$�%&

Call a

method

��-�	�(�	���<���
(��	�= �	���������	�

����'�����	���	<"=

�	�������
�<3��3:�3>3=

Calling a method is also often referred

to as sending a message in Ruby.

Basically we are sending an object

some kind of message and are waiting

for its response. This message may

have no arguments or multiple

arguments, depending on the

message. So we kindly ask the object

to do something or give us some

information. When you "call a method"

or "send a message" something

happens. In the first example we ask a

String how long it is (how many

characters it consists of). In the last

example we substitute all occurrences

of "ae" in the string with the German

"ä".

Different kinds of objects (Strings,

Numbers, Arrays...) understand

different messages.

Define a

method

��� ��(�<����(�	��=

��.�(�	�������'

���

��� ����	<��(�=

���
	��38'�	�����3�6���(�

���

Methods are basically reusable units

of behaviour. And you can define

them yourself just like this. Methods

are small and focused on

implementing a specific behaviour.

Our example method is focused on

greeting people. You could call it like

this: ����	<3/���3=

Equality ��-�	�22��	��� 	�
��22�	�
��.�24�	�
�

��22�#�.�24������

38����3�22�38����3�.�24�	�
�

38���3�22�38����3�.�24������

With two equal signs you can check if

two things are the same. If so, 	�
�

will be returned; otherwise, the result

will be ����� .

Inequality ��-�	�?2��	��� 	�
��?2�	�
��.�24������

��?2�#�.�24�	�
�

Inequality is the inverse to equality,

e.g. it results in 	�
� when two values

are not the same and it results in

�������������������	�����	 �		������������	��������������������������	����	���

#������ !� !�" �#� "�#$�%&

����� when they are the same.

Decisions

with if

�� ����	���

��.��������������	�
�

����

��.�������������������

���

�� ���
	�22���������

������	�����

����

�����'�����

���

With if-clauses you can decide based

upon a condition what to do. When the

condition is considered true, then the

code after it is executed. If it is

considered false, the code after the

"else" is executed.

In the example, access is granted

based upon the decision if a given

input matches the password.

Constants �@A�/0A/�2 ��(��1��
� %B�2����#�7!"$7�7

%B�.�24����#�7!"$7�7

0CDE/�0FG�2��5

0CDE/�0FG�.�24��5

Constants look like variables, just in

UPCASE. Both hold values and give

you a name to refer to those values.

However while the value a variable

holds may change or might be of an

unknown value (if you save user input

in a variable) constants are different.

They have a known value that should

never change. Think of it a bit like

mathematical or physical constants.

These don't change, they always refer

to the same value.

Numbers

Numbers are what you would expect them to be, normal numbers that you use to perform basic math operations.

More information about numbers can be found in the ruby-doc of Numeric.

Concept Usage Examples Description

normal

Number

�
(�������'�
������

���

#"

Numbers are natural for Ruby, you just have to enter them!

Decimals (�������(�� ��"

�7�

You can achieve decimal numbers in Ruby simply by adding a

point.

�������������������	�����	 �		������������	��������������������������	����	���

7������ !� !�" �#� "�#$�%&

Basic Math �������	�� ("�6 ��.

24�7

7�� H�.�24

�"

5�I H�.

24�7$

5#�� #�.

24�"�

In Ruby you can easily use basic math operations. In that sense

you may use Ruby as a super-powered calculator.

Comparison �������	�� (�"�4 ��.

24�	�
�

�"�J ��.

24������

H�42 H�.

24�	�
�

Numbers may be compared to determine if a number is bigger

or smaller than another number. When you have the age of a

person saved in the ��� variable you can see if that person is

considered an adult in Germany:

����42��5�.�	�
����������

Strings

Strings are used to hold textual information. They may contain single characters, words, sentences or a whole book.

However you may just think of them as an ordered collection of characters.

You can find out more about Strings at the ruby-doc page about Strings.

Concept Usage Examples Description

Create K0��	����K K8�����)����K

K�K

KL
�	�����	�����"!��?MNOK

KK

A string is created by putting quotation

marks around a character sequence. A

Ruby style guide recommends using

single quotes for simple strings.

Interpolation 30��	�����������

.P�,��������Q3

3G(�����.P
�����(���Q3

3/���	�	������.P"�6�"Q3

30���(�����	����3

You can combine a string with a

variable or Ruby expression using

double quotation marks. This is called

"interpolation." It is okay to use double

quotation marks around a simple string,

too.

�������������������	�����	 �		������������	��������������������������	����	���

$������ !� !�" �#� "�#$�%&

Length �	���������	� 38����3�����	��.�24�7

33�����	��.�24�

You can send a string a message,

asking it how long it is and it will

respond with the number of characters

it consists of. You could use this to

check if the desired password of a user

exceeds the required minimum length.

Notice how we add a comment to show

the expected result.

Concatenate �	�����6 �	����" 38�����3�6 3������3

.�24�38�����������3

3�3�6 3�3 6 33�.�24�3��3

Concatenates two or more strings

together and returns the result.

Substitute �	�������
�<���	����:

�
��	�	
	�=

38��3���
�<3��3:�3>3=

.�24�38>3

38��3���
�<3�3:�3>3=

.�24�38��3

3F������3���
�<3�3:�3
3=

.�24�3F�

��
3

gsub stands for "globally substitute". It

substitutes all occurences of ���	����

within the string with �
��	�	
	� .

Access �	����9����	���; 38����39�;�.�24�3�3 Access the character at the given

position in the string. Be aware that the

first position is actually position 0.

Arrays

An array is an ordered collection of items which is indexed by numbers. So an array contains multiple objects that

are mostly related to each other. So what could you do? You could store a collection of the names of your favorite

fruits and name it fruits.

This is just a small selection of things an Array can do. For more information have a look at the ruby-doc for Array.

Concept Usage Examples Description

�������������������	�����	 �		������������	��������������������������	����	���

H������ !� !�" �#� "�#$�%&

Create 9��	��	�; 9;

93�����3:�3�
�3:�7;

Creates an Array, empty or with the specified

contents.

Number of

elements

����'���R� 9;���R��.�24�

9�:�":��;���R��.�24��

93���3:�3���3;���R��.�24�"

Returns the number of elements in an Array.

Access ����'9����	���; ����'�2�93��3:�3���3:�3���3;

����'9 ;�.�24�3��3

����'9";�.�24�3���3

As an Array is a collection of different

elements, you often want to access a single

element of the Array. Arrays are indexed by

numbers so you can use a number to access

an individual element. Be aware that the

numbering actually starts with "0" so the first

element actually is the 0th. And the last

element of a three element array is element

number 2.

Adding an

element

����'�JJ

���(��	

����'�2�9�:�":��;

����'�JJ #

����'�.�24�9�:�":��:�#;

Adds the element to the end of the array,

increasing the size of the array by one.

Assigning ����'9�
(���;�2

1��
�

����'�2�93��3:�3���3:�3���3;

����'9";�2 3���3

����'�.�24�93��3:�3���3:�3���3;

Assigning new Array Values works a lot like

accessing them; use an equals sign to set a

new value. Voila! You changed an element of

the array! Weehuuuuu!

Delete at

index

����'�����	���	<�= ����'�2�9 :��#:�77:�H!;

����'�����	���	<"=

����'�.�24�9 :��#:�H!;

Deletes the element of the array at the

specified index. Remember that indexing

starts at 0. If you specify an index larger than

the number of elements in the array, nothing

will happen.

Iterating ����'���� ���S�S

������

����������� ���S�S��
	������(�����

�
(�������� ���S�S���2���I�"����

"Iterating" means doing something for each

element of the array. Code placed between

do and end determines what is done to each

element in the array.

�������������������	�����	 �		������������	��������������������������	����	���

5������ !� !�" �#� "�#$�%&

The first example prints the name of every

person in the array to the console. The

second example simply doubles every

number of a given array.

Hashes

Hashes associate a key to some value. You may then retrieve the value based upon its key. This construct is called

a dictionary in other languages, which is appropriate because you use the key to "look up" a value, as you would

look up a definition for a word in a dictionary. Each key must be unique for a given hash but values can be repeated.

Hashes can map from anything to anything! You can map from Strings to Numbers, Strings to Strings, Numbers to

Booleans... and you can mix all of those! Although it is common that at least all the keys are of the same class.

Symbols are especially common as keys. Symbols look like this: ��'(��� . A symbol is a colon followed by some

characters. You can think of them as special strings that stand for (symbolize) something! We often use symbols

because Ruby runs faster when we use symbols instead of strings.

Learn more about hashes at ruby-doc.

Concept Usage Examples Description

Creating P*�'�24�1��
�Q P�����'�24�3������((���3Q

P#"�24�3������3:�3����3�24�� :

����(��24�3/���3Q

You create a hash by surrounding the

key-value pairs with curly braces. The

arrow always goes from the key to the

value depicting the meaning: "This key

points to this value.". Key-value pairs

are then separated by commas.

Accessing ����9*�'; �����2�P�*�'�24�31��
�3Q

����9�*�';�.�24�31��
�3

����9���;�.�24����

Accessing an entry in a hash looks a

lot like accessing it in an array.

However with a hash the key can be

anything, not just numbers. If you try to

access a key that does not exist, the

value ��� is returned, which is Ruby's

way of saying "nothing", because if it

doesn't recognize the key it can't

return a value for it.

Assigning ����9*�';�2

1��
�

�����2�P���24�3�3Q

����9�*�';�2�31��
�3

�����.�24�P��243�3:��*�'2431��
�3Q

Assigning values to a hash is similar to

assigning values to an array. With a

hash, the key can be a number or it

can be a symbol, string, number... or

anything, really!

�������������������	�����	 �		������������	��������������������������	����	���

!������ !� !�" �#� "�#$�%&

Deleting ���������	�<*�'= �����2�P���24�3�3:����24�� Q

���������	�<��=

�����.�24�P��24� Q

You can delete a specified key from

the hash, so that the key and its value

can not be accessed.

Rails Basics
This is an introduction to the basics of Rails. We look at the general structure of a Rails application and the important

commands used in the terminal.

If you do not have Rails installed yet, there is a well maintained guide by Daniel Kehoe on how to install Rails on

different platforms.

The Structure of a Rails app

Here is an overview of all the folders of a new Rails application, outlining the purpose of each folder, and describing

the most important files.

Name Description

app This folder contains your application. Therefore it is the most important folder in Ruby on Rails and it

is worth digging into its subfolders. See the following rows.

app/assets Assets basically are your front-end stuff. This folder contains images you use on your website,

javascripts for all your fancy front-end interaction and stylesheets for all your CSS making your

website absolutely beautiful.

app/controllers The controllers subdirectory contains the controllers, which handle the requests from the users. It is

often responsible for a single resource type, such as places, users or attendees. Controllers also tie

together the models and the views.

app/helpers Helpers are used to take care of logic that is needed in the views in order to keep the views clean of

logic and reuse that logic in multiple views.

app/mailers Functionality to send emails goes here.

app/models The models subdirectory holds the classes that model the business logic of our application. It is

concerned with the things our application is about. Often this is data, that is also saved in the

database. Examples here are a Person, or a Place class with all their typical behaviour.

app/views The views subdirectory contains the display templates that will be displayed to the user after a

successful request. By default they are written in HTML with embedded ruby (.html.erb). The

embedded ruby is used to insert data from the application. It is then converted to HTML and sent to

the browser of the user. It has subdirectories for every resource of our application, e.g. places,

persons. These subdirectories contain the associated view files.

Files starting with an underscore (_) are called partials. Those are parts of a view which are reused in

other views. A common example is _form.html.erb which contains the basic form for a given

resource. It is used in the new and in the edit view since creating something and editing something

looks pretty similar.

�������������������	�����	 �		������������	��������������������������	����	���

� ������ !� !�" �#� "�#$�%&

Important Rails commands

Here is a summary of important commands that can be used as you develop your Ruby on Rails app. You must be

in the root directory of your project to run any of these commands (with the exception of the rails new command).

The project or application root directory is the folder containing all the subfolders described above (app, config, etc.).

Concept Usage Description

Create a new

app

��������� ��(� Create a new Ruby on Rails application with the given name here. This will

give you the basic structure to immediately get started. After this command

has successfully run your application is in a folder with the same name you

gave the application. You have to cd into that folder.

Start the server ���������1�� You have to start the server in order for your application to respond to your

requests. Starting the server might take some time. When it is done, you can

access your application under localhost:3000 in the browser of your choice.

In order to stop the server, go to the console where it is running and press

Ctrl + C

Scaffolding ������������	�

������ ��(�

�		���
	��	'��

The scaffold command magically generates all the common things needed for

a new resource for you! This includes controllers, models and views. It also

creates the following basic actions: create a new resource, edit a resource,

show a resource, and delete a resource.

That's all the basics you need. Take this example:

������������	�������� ����
	���(���	������������	����

Now you can create new products, edit them, view them and delete them if

you don't need them anymore. Nothing stops you from creating a full fledged

web shop now ;-)

Run migrations ��*�����(����	� When you add a new migration, for example by creating a new scaffold, the

migration has to be applied to your database. The command is used to

update your database.

Install

dependencies

�
��������	��� If you just added a new gem to your Gemfile you should run bundle install to

install it. Don't forget to restart your server afterwards!

Check

dependencies

�
�������* Checks if the dependencies listed in Gemfile are satisfied by currently

installed gems

Editor tips
When you write code you will be using a text editor. Of course each text editor is different and configurable. Here are

just some functions and their most general short cuts. All of them work in Sublime Text 2. Your editor may differ!

�������������������	�����	 �		������������	��������������������������	����	���

�������� !� !�" �#� "�#$�%&

The shortcuts listed here are for Linux/Windows. On a Mac you will have to replace Ctrl with Cmd.

Function Shortcut Description

Save file Ctrl + S Saves the currently open file. If it was a new file you may also be asked where to save it.

Undo Ctrl + Z Undo the last change you made to the current file. Can be applied multiple times in

succession to undo multiple changes.

Redo Ctrl + Y

or Ctrl +

Shift + Z

Redo what you just undid with undo, can also be done multiple times.

Find in File Ctrl + F Search for a character sequence within the currently open file. Hit Enter to progress to

the next match.

Find in all

Files

Ctrl + Shift

+ F

Search for a character sequence in all files of the project.

Replace Ctrl + H

or Ctrl + R

Replace occurrences of the supplied character sequence with the other supplied

character sequence. Useful when renaming something.

Copy Ctrl + C Copy the currently highlighted text into the clipboard.

Cut Ctrl + X Copy the highlighted text into the clipboard but delete it.

Paste Ctrl + V Insert whatever currently is in the clipboard (through Copy or Cut) at the current caret

position. Can insert multiple times.

New File Ctrl + N Create a new empty file.

Search and

open file

Ctrl + P Search for a file giving part of its name (fuzzy search). Pressing enter will open the

selected file.

Comment Ctrl + / Marks the selected text as a comment, which means that it will be ignored. Useful when

you want to see how something behaves or looks without a specific section of code

being run.

Help: What to do when things go wrong?
Things go wrong all the time. Don't worry, this happens to everyone. So keep calm. When you encounter an error,

just google the error message. For best results, add the keywords "rails" or "ruby". Results from stackoverflow.com

are often really helpful. Look for those! The most experienced developers do this frequently ;-).

Here are common mistakes with a little checklist:

Have you run rake db:migrate to apply the newest database migrations?

Have you really saved the file you just changed? Unsaved files are often marked in the editor via an asterisk or

a point next to their name.

If you just added a gem to the Gemfile, have you run bundle install to install it?

If you just installed a gem, have you restarted the server?

�������������������	�����	 �		������������	��������������������������	����	���

�"������ !� !�" �#� "�#$�%&

Do you need more beginner friendly in depth information about Ruby on Rails? We have started to gather free

tutorials and learning material on a resources page! Please give feedback about your favorite tutorials and lessons!

created by Tobias Pfeiffer

About

·

Blog

·

Resources

�������������������	�����	 �		������������	��������������������������	����	���

�������� !� !�" �#� "�#$�%&

