
GIT CONTROL OF YOUR VERSION MANAGEMENT

GIT
FUNDAMENTALS

THOM PARKINBY

www.it-ebooks.info

http://www.it-ebooks.info/

GIT
FUNDAMENTALS

BY THOM PARKIN

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals
by Thom Parkin

English Editor: Paul FitzpatrickPeer reviewer: Ralph Mason

Cover Designer: Alex WalkerPeer reviewer: Nuria Zuazo

Peer reviewer: Steve Browning

Peer reviewer: Matt Parkin

Editor: Linda Jenkinson

License
Document licensed under the GNU Free Documentation License2

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

Printed and bound in the United States of America

2 http://www.gnu.org/licenses/#FDL

ii

www.it-ebooks.info

http://www.gnu.org/licenses/#FDL
http://www.it-ebooks.info/

About Thom Parkin

Thom has been writing software since the days when all phones were wired. He calls himself

a ParaHacker. Seduced by Rails and then enthralled with Ruby, Thom was an early adopter

of RubyMotion. When he is not playing board games, you will find Thom on the SitePoint

Forums1 where he is a Team Leader.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

1 http://www.sitepoint.com/forums/

iii

www.it-ebooks.info

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/
http://www.sitepoint.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 1 An Introduction to Git 1

Synopsis . 1

Why Read This Guide? . 3

What to Expect . 3

Setting up Git . 4

The History is Important . 5

Chapter 2 Using Git . 7

Let's Git Started! . 7

The Commit—Setting Your Work in Stone . 9

Checkout—Stepping Back in Time . 11

Log—Reviewing the History of Your Project . 12

Status . 13

Comparing Changes . 15

Branches . 16

Merging . 17

Remotes . 18

Never Fear Change Again! . 18

Return the Favor . 19

Appendix A A Git Mini-Reference 21

List of Basic Git Commands . 21

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter1
An Introduction to Git

Synopsis
Git1 is a popular, free Version Control System, designed for use by software de-

velopers. The essence of Version Control is the ability to capture the state of software

documents, and in doing so make it possible to revert to a previous state if required.

The safety net that this provides aids collaboration, and encourages freedom to ex-

periment.

So, if you're not a software developer, why would you care about Git? Can you recall

a time when, working on something important, you found yourself wishing you

could undo something? With Version Control you can, in effect, rewind time. By

capturing snapshots of your progress, any stage in a project can be revisited and

modified quite freely. You even have the ability to cherry pick certain changed files

and merge them with others from different points along your project's timeline.

One of the things that makes Git special is that it's local—in other words, based on

your own computer. As such, you don't need any special servers or complex

1 http://git-scm.com/

www.it-ebooks.info

http://git-scm.com/
http://www.it-ebooks.info/

equipment to use it. Since Git is file-based, it works with anything you can create

or manipulate on a computer—text documents, image files, audio or video—and

you can easily share or transport your work to other computers, even as an email

attachment. When collaborating, Git enables all members of a team to work inde-

pendently, and easily blend together the best of each contributor's efforts into a final

product.

Traditionally, working on a project with multiple people can quickly become a

nightmare of "change management." You make changes, then your colleague does

likewise, and while another colleague is updating the document you suddenly re-

member some important facts that need to be added. So as not to forget, you make

changes to your copy, but now there are multiple versions of the document, all with

different amendments and no easy way to consolidate them.

Software developers face precisely this dilemma all the time—not to mention de-

signers, content writers, video artists, web developers, and so on. And the system(s)

that are used to help with this are called Source Code Management (SCM) systems.

An SCM system helps to resolve conflicts among files and conflicts within a file as

a result of multiple people making changes to the same file. Git is one of the most

popular SCM systems, and it's available to anyone, at no cost.

If you're a photographer or digital artist, you can save your work at any state and

freely experiment. If you're a programmer, you can save a program before you make

big changes to improve performance. For someone who generates documents (a

teacher who creates curricula, for example) the ability to effectively rewind time is

immensely valuable. Similarly, if you've ever had a very large document that rep-

resents hundreds of hours of work and the computer suddenly can't read the file,

a system like Git provides integrated backup, without the tedium of making multiple

copies under different names.

Regardless of the type of development or design work you do—front-end UI devel-

opment or back-end coding—managing the change and evolution of your working

projects is both important and challenging. With Git, you'll be able to see all your

changes, and even compare the differences between versions. Projects that use a

Git repository can be stored on a site like Github or, because Git is file-based, you

can even host it in a Dropbox folder.

Git Fundamentals2

www.it-ebooks.info

http://www.it-ebooks.info/

Git is not Github!

Git is not to be confused with Github2! Although the names are similar, Github

is a very popular website that hosts version control repositories (primarily Git

repositories).

Why Read This Guide?
The goal of this guide is to:

■ introduce you to Git

■ overcome the intimidating perception that Git is very “geeky” and confusing for

non-programmers

■ fill a gap in almost all other resources on the web for learning (and learning

about) Git

Among those who use Git on a regular basis, there is a sort of "evangelism" movement

to help lead others to understand this great, free tool. That is the purpose of this

guide. It's designed as a simple tutorial; an opportunity for you to “get your feet

wet” in the Git world. You are not expected to become a Git expert as a result of

reading this. You will not be tested on your “geek smarts.”

After reading this you should be able to:

■ decide if Git is a tool that can help your workflow

■ feel much more comfortable approaching and using Git (or Github)

What to Expect
In order to understand how Git can help you, we'll take you on a tour. The tour in-

cludes the Git commands and workflow that most web developers, designers, and

content specialists might use. We'll use a simple example project, "Halo Whirled,"

to show you how you might use Git. The "Halo Whirled" walk-through uses only

the basic Git commands.

2 https://github.com/

3An Introduction to Git

www.it-ebooks.info

https://github.com/
http://www.it-ebooks.info/

Like any tour, we ask that you trust the directions will not lead you into any trouble.

Don’t be intimidated by typing commands directly in the command line. Don’t

worry about response(s) from your computer that we have not explicitly described.

There is nothing in this set of examples that can cause any permanent harm to your

computer.

Although Git was originally designed, and is most often used, for software source

control, every attempt has been made here to be very generic in the discussion. You

should see how these functions and features can apply to any work you do—espe-

cially if you find yourself in an environment of constant change.

Setting up Git
The first step is to download and install Git. Git is entirely free, and can run on

machines using Windows, Mac and Linux operating systems. Based on your oper-

ating system, the specific process to install Git will vary slightly. Rather than repeat

the installation instructions that are already widely available on the web, we will

instead point you to some some existing installation guides that we recommend:

■ to install Git on a Mac, go to http://alvinalexander.com/mac-os-x/how-installgit-

mac-os-x-osx

■ to install Git on Windows, go to http://msysgit.github.com/

■ many distributions of Linux come with Git pre-installed, but if that’s not the

case for you, you can download it from http://git-scm.com/download/linux

The Command Line

The most common way to use Git is via the “command line”. The command line

is a simple program that you find on all computers. It allows you to write instruc-

tions for the computer in a very basic way, without pretty graphics, buttons and

so on. You just write text commands. This can be a bit scary for a beginner, but

using the command line is definitely the best way to use Git.

There are “graphic user interface” (GUI) programs available as an alternative—pro-

grams that provide you with buttons to press and pretty interfaces—but we encour-

Git Fundamentals4

www.it-ebooks.info

http://alvinalexander.com/mac-os-x/how-installgit- mac-os-x-osx
http://alvinalexander.com/mac-os-x/how-installgit- mac-os-x-osx
http://msysgit.github.com/
http://git-scm.com/download/linux
http://www.it-ebooks.info/

age you at least to learn the basics of Git using the command line. All the same,

you can find a useful list of GUI options at the official Git website.3

The History is Important
The key concept in understand Git is the idea of history. Git records snapshots of

the collection of files in your project. Our goal when using Git is to capture snapshots

of our work. Rather than just having copies of the files in use, we can review the

progression of work, reassemble it, rearrange it and repeat it as desired

It will be easier to grasp the use of Git if you keep in mind this concept of history,

as most of the tasks you do in Git are related to moving through the history of your

work.

3 http://git-scm.com/downloads/guis

5An Introduction to Git

www.it-ebooks.info

http://git-scm.com/downloads/guis
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter2
Using Git

Let's Git Started!
In order to use Git it's first necessary to set up your project. This could be as simple

as a single-file CV, or as complex as a complete website and all its subfolders.

Let's use Git to set up our Halo Whirled example project. First of all, open the

command line:

■ Using Windows, go to the Start Menu and choose Run. If that doesn’t work for

you, you can also type CMD in the search box. It's a little dependent upon which

version of Windows you're using, but in almost all cases you can select Run and

type CMD in the box.

■ Using Linux, you can right-click the desktop or search the menus for words

"Linux terminal" or "Linux console"—distros vary how exactly they label this.

■ Using Mac, you can find the Terminal program in the Utilities folder within

Applications. If you don’t see it there, open Spotlight (the magnifying glass in the

top-right corner of your screen) and search for "Terminal."

www.it-ebooks.info

http://www.it-ebooks.info/

So now you have your command line open, it’s time to begin using Git. However,

before Git will allow you to interact with it on any project, you must set up two

very simple configuration options: You will identify yourself within Git by adding

your name and an email address. These can even be fabricated values if you prefer,

such as “A User” and “User@email.com."

At the command line, type the following:

git config --global user.name "Your Name Here"

git config --global user.email "your_email@example.com"

Once you've entered the required commands, you'll need to press Enter (Return on

a Mac) to run them.

Now that you and Git have become acquainted, let’s start by creating a project dir-

ectory (folder) on your system, and call it Halo Whirled. You can create this folder

anywhere you like. Let’s say, for example, that there’s a folder on your computer

called Documents, and that's where you want to store this test project. To do that,

type the following in the command line:

cd Documents

You should see a clear indication that you are now in the Documents folder. Depend-

ing upon your operating system, you may also see other things, such as a dollar

sign. For now, though, it’s time to create a folder for our project. To do this, enter:

mkdir "Halo Whirled"

The quotes are only really necessary in Windows, but they don’t hurt in Linux or

Mac. Commands like mkdir and cd are often shorthand for English instructions.

For example, mkdir means “make directory”, while cd means "change directory."

Now that we have created the Halo Whirled folder, go into that folder by typing:

cd "Halo Whirled"

Now we are inside our new project folder. We haven’t used Git at all until now. So

let's tell Git to get to work in this folder. Each command to Git consist of two words,

and the first is always git. To get Git going in our new project, we simply need to

enter:

Git Fundamentals8

www.it-ebooks.info

http://www.it-ebooks.info/

git init

Figure 2.1. Git is initialized

You will get back a message that verifies Git is on the job and ready to start working

for you with this project, similar to that shown in Figure 2.1 (your results will vary

a little, depending on what operating system you're using). We've already set up a

new project, and Git is ready to help us manage it! That wasn't hard, was it?

The Commit—Setting Your Work in Stone
The commit is fundamental to Git and source control, and is the most common action

you will take using it. A commit is a snapshot in time, and represents a reproducible

state of your project. The various commits you make during a project constitute the

project’s history.

Let’s add some files to our project, and then look at how to tell Git which files you

want it to keep track of. We will create a text file called

TheFirstFileUnderGitSourceControl.txt. In Linux and Mac this is as easy as typing:

touch TheFirstFileUnderGitSourceControl.txt

If you're using Windows, you can simply create a TXT document in Notepad and

then save it.

Now let’s add some content to this file. For now, we’ll do this in the typical way—by

navigating on your computer to the Documents > Halo Whirled folder. Open the new

9Using Git

www.it-ebooks.info

http://www.it-ebooks.info/

TheFirstFileUnderGitSourceControl.txt file in a text editor and type the year you were

born. On a new line, type your favorite flavor of ice cream, for example:

I was born in 1842.

My favorite flavor of ice cream is vanilla.

Once you’re done, save the file. Now let’s return to the command line tool and tell

Git to start tracking the history of this new file. Type the command:

git add TheFirstFileUnderGitSourceControl.txt

Don’t expect any feedback at this stage. Git has happily accepted your command

and executed it instantly. Git now knows that you are going to track the progress

of this file.

Let’s capture the current state of this file for all time by performing our first commit.

Enter the following:

git commit -am "Initial Commit"

A commit has at least two parts: the file(s) to be included and a commit "message."

The message is just a handy label (one or more tags, a description, or whatever) that

we add to help us when searching through a long list of commits in the history.

We'll be doing that shortly.

Figure 2.2. Our initial commit

Git Fundamentals10

www.it-ebooks.info

http://www.it-ebooks.info/

The result of the commit command will be a little spurt of text, similar to that shown

in Figure 2.2. If you look carefully, you'll see that it shows you what was saved in

the commit. Now the fun begins. Once again, open

TheFirstFileUnderGitSourceControl.txt file in your text editor. Delete the text you typed

earlier and add some new text. It doesn't matter what it is. Save and close it, then,

back in your command line tool, type this:

git commit -am "Changed all the text"

You have just begun to develop a history in Git. The command above has committed

the new changes to this project’s history. This example of using Git has involved

only one file, but this process applies equally to any number of files and/or folders

in your project.

Checkout—Stepping Back in Time
Let’s say we now want to use Git to access a previous state of our project. To do so,

we can use the checkout command. In the command line, type the following:

git checkout HEAD^

Don’t be concerned by all the scary messages Git throws at you at this point. The

world is not about to end!

The checkout command is not one you'll use like this very often, but it’s handy for

us at this point. To see the effect of checkout, open the

TheFirstFileUnderGitSourceControl.txt file in your text editor again. You'll see that it

has returned to its previous state.

It’s important to note here that we haven't deleted any of our project's history by

running the checkout command. The commits you make to your history are perman-

ent. Indeed, there's nothing you can do in Git to make them disappear.

It's also worth noting that using checkout in this way isn't how we'd normally return

to a project's earlier state. It's just a little cheat we're employing here to keep things

simple.

When we made our commits earlier, you might recall that we added messages to

them to make them easier to find. Below, you'll learn a better way to access your

project's various states. Before that, though, let's make it a bit more "real world."

11Using Git

www.it-ebooks.info

http://www.it-ebooks.info/

Go to your Halo Whirled project folder and place a new web page file inside, calling

it index.html. (Use your preferred text editor to create this file.) While you're at it,

create a new folder called images inside the Halo Whirled folder. Now go back to

your command line tool to commit these changes by typing:

git add index.html

git add images/

git commit -am "A Simple Web Project"

Our little project is now the beginnings of a simple web site. Next we’ll explore

how to view the history of what we’ve done so far.

Log—Reviewing the History of Your Project
When you want to see the entire history of your project, and locate a particular

point to check out, simply issue the command:

git log

Figure 2.3. The results of running git log

The results of running this command should be similar to Figure 2.3. You may notice

that each entry—regardless of the commit message you created for it—has a unique

signature, called a hash, which looks something like this:

Git Fundamentals12

www.it-ebooks.info

http://www.it-ebooks.info/

c178771270d4

Your hashes will be differant than the ones shown above. Each hash is generated

automatically by Git, and each one uniquely identifies a particular commit. You

can use these signatures to revert to the various states in the project’s history.

Try it out using our current project. Although the actual hash you use will be differ-

ent, the command will look something like this:

git checkout c178771270d4

Whenever you issue the checkout command, the set of files that are contained in

that commit are restored to whatever state they were at the time of the commit. This

means any files you currently have with the same name as those in that commit

will be completely overwritten.

Using Hashes

You don't actually need to type out the full (very long!) hash. Git is smart enough

to work out which commit you mean if you only type out the first few characters,

as long as that short string is unambiguous (in other words, no other commit also

starts with those characters). The first few characters will often suffice, and 8

characters is normally more than enough.

Status
When you're in the process of making changes, and committing them to save various

states, it's easy to lose track of what has been updated, changed or committed. Git

has a solution this kind of version blindness: a useful command—and arguably the

second most used in Git—called status. It enables you to see what changes have

been made and whether they've been committed to the Git repository. Try this:

git status

You should see output similar to Figure 2.4.

13Using Git

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.4. git status output

Now modify one of the files that's being tracked by Git. Then issue the git status

command a second time. Make another commit, and check the status again. You

should see something similar to Figure 2.5.

Figure 2.5. Updated output from git status

Finally, add another file to your project (you could create a new text file, such as

README), and check the status one more time. Next, add the file to Git for tracking

with:

git add <filename>

And, yes, you guessed it, check the status again:

git status

You should see something similar to Figure 2.6.

Git Fundamentals14

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.6. More updates from git status

As you can see, this command allows you to find out what changes have been made

and committed and so maintain your bearings on what Git believes it's tracking.

Comparing Changes
By this stage your original file, TheFirstFileUnderGitSourceControl.txt, should have

gone through many changes—all of which have been stored in the Git history. Make

sure you have committed any recent changes. Double-check there are no outstanding

changes with the status command:

git status

It should say "nothing to commit, working directory clean." if there are no

outstanding changes. Take a look at your history to locate the hash of the very first

commit you made:

git log

Let’s assume that the entry looks like this (yours will vary just a little):

commit c178771270d4ebf3f59f33201658f2a20d60eb01

Author: Thom Parkin <Thom.Parkin@Websembly.com>

Date: Sat Jan 26 17:18:23 2013 -0500

15Using Git

www.it-ebooks.info

http://www.it-ebooks.info/

Initial Commit

The command to check out that “Initial Commit” would be the following (but don't

do it now):

git checkout c178771270d

Instead, try this command:

git diff c178771270d

The diff command is intended to show you the differences between two commits.

Specifically, it'll show exactly what changed in each and every file. Notice the plus

(+) and minus (-) symbols. They indicate which files and which lines within each

file were added and removed, respectively. This can be valuable information. Git

provides the capability to retrieve those individual changes en masse or selectively.

That's where some of the more complex commands (and the concept of merging,

which we'll introduce a little later) would apply.

Branches
Often, in software development, a new feature or an attempt to solve a problem may

lead the code development process off on a tangent. This concept, known as

branching, is so common it's part of the fundamental design philosophy of Git.

Assuming you have no uncommitted changes in your project (create a new commit

if necessary) try this command:

git checkout -b trial_by_fire

This creates a new branch representing the current point in the history. Having a

branch allows you to continue from this point without affecting the base point from

which this stems.

Let’s make this clearer by taking a look at an example. Get a list of all the files Git

is tracking in this project:

git ls-files

Now, issue the delete command for each file:

git rm <filename>

Git Fundamentals16

www.it-ebooks.info

http://www.it-ebooks.info/

Then, verify you have removed everything with:

git status

And make a new commit:

git commit -am “Deleted everything”

Now we can restore our project:

git checkout master

Voila! We've restored everything back to its original state.

master is always the name of the main branch—the one from which you always

start. Everything else branches from that. If you form an image in your mind of a

railway system it might help to understand the concept of branching. Each station

on the railway is like a commit in the Git history. You can travel to any station

(commit) along the system (branches) to arrive at a previous location (which, in our

case, is a state of the set of files).

And there's no limit to the number of branches you can create. You can always see

the list of branches with:

git branch

There will be an asterisk to show you which branch is current. In order to check

out a branch so you can work on it you simply enter:

git checkout <branchname>

Merging
As we discussed earlier, one of the main goals of a Source Control Management

system is to allow for multiple developers to collaborate efficiently. That often

means they can't afford to wait their turn to make changes to files. However, as you

may recall, one of the highlighted features of Git is that the entire history is held

locally—right there on your machine. So, how can multiple people collaborate,

making changes to the same files, when they all have their own copies of those files?

Without the special help provided by Git through merging it'd be impossible. Sadly,

17Using Git

www.it-ebooks.info

http://www.it-ebooks.info/

exploring the detail of a merge is beyond the scope of this short introduction, but

you can find more information at the Atlassian Git Tutorial1 and the Git Reference2.

Remotes
In order for a group to collaborate on a project they must share the Git repository.

This can be done in a number of ways, but one popular tool for hosting Git reposit-

ories is Github3. An account on Github is free and, in order to support Open Source

Software development, there is no limit to the number of publicly visible repositories

you can host.

It's important to realize that Git and Github are two distinct entities. Although many

times they are used together in the same sentence it's incorrect to use them inter-

changeably. Remember that your entire project history is in the Git repository, and

that is local on your machine. A remote host like Github provides a centralized

backup of that history.

Never Fear Change Again!
So now you know—when your projects are under Source Control with Git, the next

time you find yourself cursing a seemingly irrevocable change, all is not lost.

There are even ways to undo changes that have not yet been committed! That

functionality is beyond the scope of this guide, but a search on Google or Bing will

yield plenty of detailed explanations.

One final important thing to note is that in the simple example we walked through

here, we primarily used a single text file: TheFirstFileUnderGitSourceControl.txt. That

was purely for illustration, but the same process can be applied to any file on your

computer!

Hopefully we've covered enough here for you to have a good, basic understanding

of what Git can do and why it can be so very useful when undertaking any substantial

project.

1 http://www.atlassian.com/git/tutorial/git-branches#!merge
2 http://gitref.org/branching/
3 https://github.com/

Git Fundamentals18

www.it-ebooks.info

http://www.atlassian.com/git/tutorial/git-branches#!merge
http://gitref.org/branching/
https://github.com/
http://www.it-ebooks.info/

Return the Favor
Regardless of the type of work you're doing, it's immeasurably rewarding to contrib-

ute your talents to the world of Open Source software. Find a project on Github you

use, or like, or believe could be better. Use the command:

git clone

to get a copy of the project's codebase for yourself to work on and improve. Github

provides instructions for submitting a “Pull Request”4 to have your changes reviewed

and included by the project maintainer.

4 https://help.github.com/articles/using-pull-requests

19Using Git

www.it-ebooks.info

https://help.github.com/articles/using-pull-requests
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: A Git Mini-Reference

List of Basic Git Commands
This summary of basic Git commands should be handy as a reference while you

explore and learn more:

■ Tell Git what files to track for changes

■ git add <filename, folder name or list of filenames (separated by spaces)>

■ Store the current state so you can always return to it

■ git commit -am “A message that will help you understand what this commit

contains”

■ To restore all the files from a previous commit

■ git checkout <an unambiguous portion of the hash>

■ To get the hashes of previous commits

■ git log

■ To interact with “remote” git repositories (such as projects on Github)

■ git push

■ git pull

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Git Fundamentals
	Table of Contents
	An Introduction to Git
	Synopsis
	Why Read This Guide?
	What to Expect
	Setting up Git
	The History is Important

	Using Git
	Let's Git Started!
	The Commit—Setting Your Work in Stone
	Checkout—Stepping Back in Time
	Log—Reviewing the History of Your Project
	Status
	Comparing Changes
	Branches
	Merging
	Remotes
	Never Fear Change Again!
	Return the Favor

	Appendix A: A Git Mini-Reference
	List of Basic Git Commands

