
www.it-ebooks.info

http://www.it-ebooks.info/

Creating Development
Environments with Vagrant

Create and manage virtual development environments
with Puppet, Chef, and VirtualBox using Vagrant

Michael Peacock

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Development Environments with Vagrant

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-918-2

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Michael Peacock

Reviewer
Chad Thompson

Acquisition Editor
Owen Roberts

Commissioning Editor
Manasi Pandire

Technical Editors
Manal Pednekar

Larissa Pinto

Project Coordinator
Akash Poojary

Proofreader
Paul Hindle

Indexer
Mariammal Chettiyar

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Michael Peacock (www.michaelpeacock.co.uk) is an experienced Senior/Lead
Developer and a Zend Certified Engineer from Newcastle, UK, with a degree in
Software Engineering from the University of Durham.

After spending a number of years running his own web agency, managing the
development team, and working for Smith Electric Vehicles on developing their
web-based Vehicle Telematics platform, he currently serves as a CTO for Ground Six
(www.groundsix.com), an ambitious tech company, where he leads the development
team and manages the software development processes.

He is the author of Drupal 7 Social Networking, PHP 5 Social Networking, PHP 5
E-Commerce Development, Drupal 6 Social Networking, Selling Online with Drupal
E-Commerce, and Building Websites with TYPO3. Other publications Michael has been
involved in include Mobile Web Development, Drupal for Education and E-Learning, and
Jenkins Continuous Integration Cookbook, for which he acted as a Technical Reviewer.

Michael has also presented at a number of user groups and conferences including
PHP UK Conference, Dutch PHP Conference, ConFoo, PHPNE, PHPNW, and
Cloud Connect.

You can follow Michael on Twitter, @michaelpeacock, or find out more about him
through his blog, www.michaelpeacock.co.uk.

I'd like to thank all the staff at Packt Publishing, in particular, Erol
Staveley, Robin de Jongh, Akash Poojary, and Manasi Pandire
for seeing this book through to fruition. I'd also like to thank my
Technical Reviewer, Chad Thompson, who helped ensure the
technical quality of the book was up to scratch.
My thanks also go to my friends and family, in particular, my wife
Emma for her support while working on the book.
Finally, I'd like to thank you, the reader; I hope you enjoy this
book and enjoy the benefits of using virtualized development
environments with Vagrant!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Chad Thompson is a software developer, architect, and builder in central Iowa,
and is currently employed as a DevOps Engineer with Dice Holdings, Inc. in
Urbandale, IA. Chad has many years of experience in creating and helping others
create great technology, from working closely with development teams to speaking
and writing. Chad is currently serving as a Senior Contributing Author for the
SELECT Journal published by the Independent Oracle Users Group. He has also
written articles for a number of online publications and spoken at many industry
conferences and events. You can find other writings, presentations, and more
information about Chad at http://chadthompson.me.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with Vagrant 5

Requirements for Vagrant 8
Getting installed 8

Installing VirtualBox 8
Installing Vagrant 13

Summary 14
Chapter 2: Managing Vagrant Boxes and Projects 15

Creating Vagrant projects 15
Importing and using base boxes 16
Creating projects without importing a base box 19

Managing Vagrant boxes 20
Adding Vagrant boxes 21
Listing Vagrant boxes 22
Removing Vagrant boxes 22
Repackaging Vagrant boxes 23
Finding Vagrant boxes 23

Controlling guest machines 23
Powering up the virtual machine 23
Suspending the virtual machine 25
Resuming the virtual machine 25
Shutting down the virtual machine 25
Starting from scratch 26
Connecting to the virtual machine over SSH 26

Integration between the host and the guest 27
Port forwarding 27
Synced folders 27
Networking 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Auto-running commands 28
Summary 29

Chapter 3: Provisioning with Puppet 31
Provisioning 32
About Puppet 32

Creating modules and manifests with Puppet 33
Puppet classes 33
Default Puppet manifests 34
Resources 35
Resource execution ordering 37

Installing software 37
Updating our package manager 38
Installing the Apache package 38
Running the Apache service 39

File management 39
Copying a file 39
Creating a symlink 40
Creating folders 41
Creating multiple folders in one go 41

cron management 42
Running commands 42
Manage users and groups 43

Creating groups 43
Creating users 43
Updating the sudoers file 44

Subscribe and refresh only 44
Puppet modules 45
Using Puppet to provision servers 45

Summary 46
Chapter 4: Provisioning with Chef 47

Knowing about Chef 48
Creating cookbooks and recipes with Chef 48

Resources – what Chef can do 49
Installing software 49

Updating our package manager 50
Installing the Apache package 50
Running the Apache service 51

Understanding file management 51
Copying a file 51
Creating a symlink 52
Creating folders 53
Creating multiple folders in a single process with looping 53

Managing cron 54
Running commands 54

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Managing users and groups 55
Creating groups 55
Creating users 55
Updating the sudoers file 56

Knowing common resource functionalities 56
Using Chef cookbooks 56
Using Chef to provision servers 57

Summary 57
Chapter 5: Provisioning with Vagrant using Puppet and Chef 59

Provisioning within Vagrant 59
Provisioning with Puppet on Vagrant 60

Using Puppet in a standalone mode 60
Puppet provisioning in action 61

Using Puppet in client/server mode 62
Provisioning with Chef on Vagrant 62

Using Chef solo 63
Using Chef in client/server mode 64

Other built-in provisioners 64
Provisioning with SSH – a recap 65
Ansible playbooks 65

Using multiple provisioners on a single project 65
Overriding provisioning via the command line 66
Summary 67

Chapter 6: Working with Multiple Machines 69
Using multiple machines with Vagrant 70

Defining multiple virtual machines 70
Connecting to multiple virtual machines over SSH 71

Networking multiple virtual machines 72
Provisioning the machines separately 74

Destroying a multi-machine project 75
Summary 75

Chapter 7: Creating Your Own Box 77
Getting started 77
Preparing the VirtualBox machine 78
VirtualBox Guest Additions 83
Vagrant authentication 84

Vagrant user and admin group 84
Sudoers file 85
Insecure public/private key pair 85

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Provisioners 86
Puppet 86
Chef 86

Cleanup 87
Export 87
Summary 87

Appendix: A Sample LAMP Stack 89
Index 99

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Web-based software projects are increasingly complicated, with a range of different
dependencies, requirements, and interlinking components. Swapping between
projects, which require different versions of the same software, becomes troublesome.
Getting team members up and running on new projects also becomes time-consuming.

Vagrant is a powerful tool for creating, managing, and working with virtualized
development environments for your projects. By creating a virtual environment for
each project, their dependencies and requirements are isolated, and don't interfere;
they also don't interfere with software installed on your own machine such as
WAMP or MAMP. Colleagues can be up and running on a new project in minutes
with a single command. With Vagrant, we can wipe the slate clean if we break our
environment, and be back up and running in no time.

What this book covers
Chapter 1, Getting Started with Vagrant, introduces the concept of virtualization, its
importance in the role of the development environment, and walks through the
Vagrant installation process.

Chapter 2, Managing Vagrant Boxes and Projects, walks through creating Vagrant
projects, exploring and configuring the Vagrantfile, and working with base boxes.

Chapter 3, Provisioning with Puppet, explores the provisioning tool Puppet and how
to create Puppet manifests to provision a server.

Chapter 4, Provisioning with Chef, explores the provisioning tool Chef and how
to create Chef recipes to provision a server.

Chapter 5, Provisioning with Vagrant using Puppet and Chef, discusses how
to use both Puppet and Chef within the context of Vagrant to provision
development environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Working with Multiple Machines, explores using Vagrant to create and
manage projects, which use multiple virtual machines which communicate with
each other.

Chapter 7, Creating Your Own Box, discusses the process of creating your own base
box for use within a Vagrant project.

Appendix, A Sample LAMP Stack, walks through the process of creating a LAMP
server within a new Vagrant project.

What you need for this book
You will need a Windows, OS X, or Linux computer with Vagrant and Oracle's
VirtualBox installed, although the install process for these will be discussed in
Chapter 1, Getting Started with Vagrant.

Who this book is for
This book is for software developers, development managers, and technical team
leaders who want to have a more efficient, robust, and flexible development
environment for their projects and for their team.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"New team members can be onboarded to new projects as easy as git clone &&
vagrant up".

A block of code is set as follows:

class apache {
 package { "apache2":
 ensure => present,
 require => Exec['apt-get update']
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

server1.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.manifest_file = "server1.pp"
 puppet.module_path = "provision/modules"
end

Any command-line input or output is written as follows:

vagrant init precise64 http://files.vagrantup.com/precise64.box

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Again, on OS X, the first step is to double-click on the Vagrant.pkg icon".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant
Developing web-based applications can be complex. We have to be able to work
with teams of people, who all need to be able to run and work on these projects, and
we work with an ever-changing stack of technologies. I know personally I've spent
countless hours setting up developers onto new projects in the past, and countless
hours wrangling with WAMP and MAMP to switch to a newer or older version of
PHP when juggling multiple projects. With everyone in a team working on their own
machine, with their own development tools on their own operating systems, it's almost
impossible to keep a consistent configuration across all the machines; especially if you
have remote workers or freelancers where you can't force IT policies on them.

As projects get more complicated, it's also easier for auxiliary configurations to be
forgotten about. Asynchronous workers, message queues, cron jobs; typically, we need
to tell the rest of the team about these, and hope someone remembers them when it is
time to deploy.

A virtualized development environment can help with this. Instead of having to
battle configurations when working on other projects, each project can simply have
its own virtualized environment. It can have its own dedicated web server, database
server, and the versions of the programming language and other dependencies it
needs. Because it is virtualized, it doesn't impact on other projects, just shut it down
and boot up the environment for the other project.

With a virtualized environment, the development environments can also mimic the
production environment. No more needing to worry if something will work when
it gets deployed, if it is being developed on a machine with the exact same software
configuration. Even if you deploy on a Linux machine but develop on Windows,
your virtualized environment can be Linux, running the same distribution as your
production environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant

[6]

While a virtualized environment makes things easier, by their nature, they are not the
easiest of things to configure and manage themselves. They still need to be configured
to work with the project in question, which often involves some level of system
administrator skills, and we need to connect to these environments and work with
them. They also, by design, are not very portable. You need to export a large image
of the virtualized environment and share that with colleagues, and keeping that
up-to-date as projects evolve can be cumbersome. Thankfully, there is a tool, which
can manage these virtualized environments for us and provide a simple interface to
configure them; an interface which involves storing configuration in simple plain text
files, which are easy to share with colleagues, keeping everyone up-to-date as the
project changes. This tool is Vagrant.

Vagrant (http://www.vagrantup.com/) is a powerful development tool, which
lets you manage and support the virtualization of your development environment.
Instead of running all your projects locally on your own computer, having to juggle
the different requirements and dependencies of each project, Vagrant lets you run
each project in its own dedicated virtual environment.

Vagrant provides a command-line interface and a common configuration language,
which allows you to easily define and control virtual machines which run on your
own systems, but which tightly integrate, allowing you to define how your own
machine and the virtual machine interact. This can involve syncing folders such that
the project code on your computer, which you edit using your IDE is synced so that
it runs on the Vagrant development environment.

Vagrant uses Providers to integrate with the third-party virtualization software,
which provides the virtualized machines for our development environment. The
default provider is for Oracle's VirtualBox however, there are providers to work
with Amazon Web Services and VMware Fusion. The entire configuration is stored
in simple plain text files. The Vagrant configuration (Vagrantfile), Puppet, and Chef
manifests are simply written in text files in a Ruby Domain Specific Language. This
means we can easily share the configurations and projects with colleagues, using
Version Control Systems such as Git or Subversion.

When using Vagrant, the next time you need to go back to a previous project,
you don't need to worry about any potential conflicts with changes made to your
development environment (for example, if you have upgraded PHP, MySQL, or
Apache on your local environment, or within the Vagrant environment for another
project). If you bring a new team member into the team, they can be up and running
in minutes Vagrant will take care of all the software and services needed to run
the project on their machine. If you have one project, which uses one web server
such as Apache, and another which uses Nginx, Vagrant lets you run these projects
independently.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

If your project's production environment involves multiple servers (perhaps one
for the Web and one for the database), Vagrant lets you emulate that with separate
virtual servers on your machine.

With Vagrant:

• Your development environment can mimic the production environment.
• Integrated provisioning tools such as Puppet and Chef allow you to store

configuration in a standard format, which can also be used to update
production environments.

• Each project is separate in its own virtualized environment, so issues as a
result of configuration and version differences for dependencies on different
projects are things of the past.

• New team members can be onboarded to new projects as easy as git clone
&& vagrant up.

• "It works on my machine" is an excuse of the past.
• The headache of linking code that you write on your own machine to your

virtualized development environment, is taken care of either through
custom-synced folders or the default-synced folder (everything in your
project's folder gets mapped to Vagrant).

• The environment can act as if it was your local machine and can map the
web server port (80) of your development machine to your development
environment if you wish.

• You can let colleagues view your own development environment, as well as
easily share the development environment.

• Your local WAMP or MAMP installations will be gathering dust!

In this chapter, we will:

• Discuss the requirements and prerequisites for Vagrant
• Install Oracle's VirtualBox
• Install Vagrant
• Verify if Vagrant was successfully installed

Once we have Vagrant and its prerequisites on our machine, we can then look at
using it for our first project.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant

[8]

Requirements for Vagrant
Vagrant can be installed on Linux, Windows, and Mac OS X, and although it
uses Ruby, the package includes an embedded Ruby interpreter. The only other
requirement is a virtualization tool such as Oracle's VirtualBox. The Oracle's
VirtualBox provider is available for free, and is included built-in with Vagrant, so we
will use and install VirtualBox in order to use Vagrant during the course of this book.
Other providers are available, including one for VMware Fusion or Workstation,
which is available as a commercial add-on (http://www.vagrantup.com/vmware).

Getting installed
Now that we know the software, which we need in order to get Vagrant running on
our machine, let's start installing VirtualBox (so that we can use Vagrant's built-in
VirtualBox provider) and Vagrant itself.

Installing VirtualBox
VirtualBox (https://www.virtualbox.org/) is an open source tool sponsored
by Oracle, which lets you create, manage, and use virtual machines on your
own computer.

VirtualBox is a graphical program, which lets you visually create virtual machines,
allocate resources, load external media such as operating system CDs, and view the
screen of the virtual machine. Vagrant wraps on top of this and provides an intuitive
command-line interface along with integration of additional tools (including
provisioners such as Puppet and Chef), so that we don't need to worry about how
VirtualBox works or what to do with it; Vagrant takes care of it for us.

The first stage is to download the installer from the VirtualBox downloads
page (https://www.virtualbox.org/wiki/Downloads). We need to select the
download, which relates to our computer (OS X, Windows, Linux, or Solaris).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Once downloaded, let's open it up and run the installer. On OS X, this involves
clicking on the VirtualBox.pkg icon that is shown on the screen. On Windows,
simply opening the installer opens the installation wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant

[10]

Before the installer runs, it first checks to see if the computer is capable of having
VirtualBox installed we need to click on Continue to begin the installation process.
While this process will vary from OS X to Windows to Linux, the process is very
similar across all platforms. There are fully detailed installation instructions for all
platforms on the VirtualBox website (https://www.virtualbox.org/manual/
ch02.html).

The first step in the process provides us with an introduction to the installation
process and reminds us as to what we are actually installing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Next, the installer informs us as to how much space it will use on our computer,
and provides us with the option to customize the installation if we want to Change
Install Location... and install the software in another location (perhaps another disk
drive if our disk is getting full).

Let's leave the default install location as it is, and click on the Install button to have
the installer install VirtualBox on our computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant

[12]

The installer then automatically installs VirtualBox for us.

Once the installation has finished, we are shown a confirmation screen with the
option of clicking on Close to close the installer.

Now we have successfully installed VirtualBox!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Installing Vagrant
Now that we have the prerequisites installed on our computer, we can actually
install Vagrant itself. This process is similar to that of installing VirtualBox. First,
let's download the relevant installer from the Vagrant page (http://downloads.
vagrantup.com/tags/v1.2.2).

Let's open up the installer and start the process. Again, on OS X, the first step is to
double-click on the Vagrant.pkg icon.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Vagrant

[14]

We now need to follow the installation steps which are provided; this is very similar
to the earlier steps for VirtualBox, and for most of the software packages in general.

Let's verify if Vagrant has been successfully installed, by opening a command
prompt (terminal on Linux/OS X or cmd on Windows) and running Vagrant.

The preceding output shows that we have successfully installed Vagrant, and that
we are able to run it.

Summary
In this chapter, we have looked at the requirements and prerequisites for Vagrant,
which include a virtualization tool such as Oracle's VirtualBox (which works with
Vagrant's built-in VirtualBox provider). We then downloaded and installed both
Oracle's VirtualBox and Vagrant, and ran Vagrant to check if it was installed correctly.

Now that we have it installed, we can now move on to using Vagrant to set up and
manage some of our projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes
and Projects

In this chapter, we will learn the basics of using Vagrant. We will look at initializing
projects, importing base boxes to be used as our operating system, and controlling
the virtual machine by powering on and off, suspending and resuming, and
connecting to the box. Finally, we will also learn how to configure some of the key
integration points between our own machine and our Vagrant-controlled virtual
machine, including:

• Port forwarding
• Folder mapping
• Networking

Creating Vagrant projects
Now that we have Vagrant installed on our machine, let's look at creating projects.
There are three different ways we can do this:

• Create a new project with a named base box and a location where the box can
be downloaded if we don't already have it setup

• Create a new project with a named base box
• Create a new project, which will get the default base box name

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[16]

Let's look at how we can do this.

While we are going to look at commands to initialize our Vagrant
projects in this chapter, these are simply quick ways to create a
Vagrantfile file with some values pre-populated. Vagrantfile
is the configuration file, which defines how Vagrant should use the
project (operating system to be used, virtual machines to boot up,
synced folders, forwarded ports, and so on).

Importing and using base boxes
Each virtual machine starts with what Vagrant calls a base box. This is a specially
packaged version of an operating system with some specific configurations in
place. The number of configurations and packages installed on this packaged
operating system is typically minimal (containing only a few tools which allow it
to communicate with Vagrant). It is the job of the end user to install the additional
software on our virtual machines, using provisioning tools. We will look at
provisioning later in this book, which will automate the process of taking a base
Vagrant box and converting it into an environment suitable for our project, for
example, by installing software such as a web server and a database server, and
configuring the appropriate programming languages.

Provided we are in the directory we wish to convert into a new Vagrant project,
we can simply run the following command at the terminal:

vagrant init precise64 http://files.vagrantup.com/precise64.box

This runs the init subcommand within Vagrant, and instructs Vagrant to create a
new project with configuration to use the box named precise64, and if the box is not
found, to import the box located at http://files.vagrantup.com/precise64.box
when the Vagrant environment is booted for the first time. The name precise64 can
be used within other new and existing projects to refer to this base box. Base boxes
are downloaded and stored in a place Vagrant can access and reuse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

After a base box is downloaded, the screen will look as follows:

The initialization of the new project creates a file named Vagrantfile within our
project's folder. When we go to boot a Vagrant virtual environment, Vagrant looks
for this configuration file to determine what to do. Because everything related to the
Vagrant environment is either within this file or the provisioning (SSH, Puppet, and
Chef) files within our project, it's easy to maintain the environment under version
control and share it with colleagues.

Let's open up the file named Vagrantfile and take a look inside:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[18]

The Vagrant configuration file is written in Ruby, and the default Vagrantfile we
get is primarily comments illustrating some of the ways we can customize the file.
These comments are prefixed with the # character.

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

There are only four lines which are not comments within the file; let's look at
them now.

The first line tells Vagrant that this is Version 2 of the configuration object; Version 2
of the configuration object is, somewhat confusingly, designed for Vagrant Versions
1.1 through to 2.0:

Vagrant.configure("2") do |config|

This next line instructs Vagrant to use the box named precise64:

config.vm.box = "precise64"

If we are working with a new Vagrant project, which uses a base box we haven't
installed, we need a mechanism for Vagrant to find and download the base box
for us. This next line tells Vagrant where it can download a copy of the box named
previously (precise64). When the VM is booted for the first time, if the base box is
not found, then it will be downloaded from the URL provided. We will see this in
action once we boot the VM for the first time in the Controlling guest machines section.
This can either be a web address or a path to a file on the filesystem or network:

config.vm.box_url = "http://files.vagrantup.com/precise64.box"

Finally, we tell Vagrant that the configuration has ended, and it should stop
processing the configuration:

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

Creating projects without importing a base box
Of course, we only need to import a base box if we need to create a project using a base
box we have not already installed on our system. Once a box has been imported, it is
usable within new and existing Vagrant projects, using the name it was imported with.
So, let's create a new project utilizing the precise64 base box we imported earlier:

vagrant init base64

As before, it then creates a new Vagrantfile and the project is set up ready for us:

The difference between initializing a project this way and the way we did earlier is
that Vagrant isn't aware of the fallback URL for the base box location. Even if we use
a base box that is already imported to Vagrant, it doesn't provide a fallback URL. If
you are going to share the project with colleagues, be sure to add a fallback URL so
that they can grab a copy of the base box.

We can also create a new Vagrant project with the following command:

vagrant init

This will again create Vagrantfile, but with two exceptions to the preceding:

• It won't have a fallback URL
• The base box name that the project will use will be base

We can of course edit the Vagrantfile to provide an alternative base box name if we
wish, or we can ensure that we have a base box setup called base within Vagrant.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[20]

Managing Vagrant boxes
We can manage Vagrant boxes using the vagrant box subcommands. Let's run that
with the help flag (--help) and see what subcommands are available:

vagrant box --help

The following screenshot shows all the available subcommands:

There are four available box-related subcommands. With each of these, we can
provide the --help flag to see what additional arguments are available. The
available box-related subcommands are:

vagrant box add <name> <url> [--provider provider] [--force]

vagrant box list

vagrant box remove <name> <provider>

vagrant box repackage <name> <provider>

Let's review these in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Adding Vagrant boxes
The add subcommand allows us to add a new box. It has two arguments and
two optional flags. The arguments are the name parameter of the box and the URL
parameter to download it from. The optional flags are --force, which will tell
vagrant to remove a pre-existing box with the same name, and --provider, which
will allow us to specify another provider to back the box (the default provider being
VirtualBox; however, there are providers available for Vagrant including VMware
and Amazon S3).

The following command would add a new precise64 box, and if an existing one is
found, it will override it:

vagrant box add precise64 http://files.vagrantup.com/precise64.box ––force

The following screenshot depicts adding a new precise64 box:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[22]

This process may take a while, as most Vagrant boxes will be at least 200 MB big.
Once downloaded, the box will be extracted and available for us to use in our
Vagrant projects:

Listing Vagrant boxes
The list subcommand will list the boxes installed within Vagrant along with the
provider that backs the box:

vagrant box list

The following screenshot shows all the boxes available within Vagrant:

Removing Vagrant boxes
We can remove the box with the remove subcommand. We need to provide the name
of the box and the provider that backs it. For example:

vagrant box remove lucid32 virtualbox

Let's see it in action:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Repackaging Vagrant boxes
The repackage subcommand lets us convert a Vagrant environment, complete with
any customizations we have made to it, such as software we have installed on it,
into a box which we can reuse and distribute to others. We will use this command in
Chapter 7, Creating Your Own Box.

Finding Vagrant boxes
The Vagrant project provides a few boxes, which we can use at the time of writing;
these are currently Ubuntu Lucid and Ubuntu Precise, both as 32-bit and 64-bit
installs, as these are Long Term Support editions:

• Lucid32 is available at http://files.vagrantup.com/lucid32.box
• Lucid64 is available at http://files.vagrantup.com/lucid64.box
• Precise32 is available at http://files.vagrantup.com/precise32.box
• Precise64 is available at http://files.vagrantup.com/precise64.box

We may, however, want to use another operating system or Linux distribution. One
option would be to create our own box, which we will discuss in Chapter 7, Creating
Your Own Box, but we can also find and download them from other sources. One
such source is the website vagrantbox.es. This is a website listing various boxes
that others have setup and provided for download.

Be careful using any box you download from an untrusted
source, as you can't guarantee what software is or isn't running
on there without further investigation.

Controlling guest machines
Now that we have a project initialized, we need to be able to control our guest
machine. At the moment, all we have is a Vagrantfile file, which defines the
configuration for the project.

Powering up the virtual machine
We can power up the virtual machine using the vagrant up command.

Firstly, Vagrant checks to see if the Vagrant environment has already been set up,
if a previously suspended environment is found, it will resume it.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[24]

If the environment was not previously suspended, Vagrant then checks to see if
the base box has already been downloaded onto the machine. If it hasn't, it will
download it.

Vagrant will then perform the following:

• Copy the base box
• Create a new virtual machine with the relevant provider (the default

being VirtualBox)
• Forward any configured ports; by default, it will forward port 22 (SSH) on

the VM to port 2222 on the host; this will allow us to connect to the VM
• Boot (power up) the VM
• Configure and enable networking, so that we can communicate with the VM
• Map shared folders between the host and the guest (by default, it will map

the folder containing the Vagrant project to /vagrant on the guest machine)
• Run any provisioning tools that are set up such as Puppet, Chef, or

SSH provisioning

After powering up the virtual machine, the screen looks something like as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Suspending the virtual machine
We can save the current state of the virtual machine to disk so that we can resume
it later. If we run vagrant suspend, it will suspend the VM and stop it from
consuming our machine's resources (except for the disk space it will occupy),
ready for us to resume later:

Resuming the virtual machine
In order to resume a previously suspended virtual machine, we simply run
vagrant resume:

Shutting down the virtual machine
We can shut down a running virtual machine using the vagrant halt command.
This instructs the VM to stop all running processes and shut down. To use it again,
we need to run vagrant up, which will power on the machine; by default, the up
command will re-run any provisioning tools we have set up:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[26]

Starting from scratch
Sometimes, things go wrong. It's not inconceivable that we might make some
changes to our virtual machine and find out that it no longer works. Thankfully,
since we have a base box, configuration file, and provisioning files, which are all
stored separately, we can instruct Vagrant to destroy our virtual machine, and then
create it again, using the configurations to set it up. This is done via the destroy
subcommand, and then the up subcommand to start it again:

vagrant destroy

vagrant up

Of course, if we update our Vagrantfile, provisioning manifests, or application
code that can also break things; so it is important we use a Version Control System to
properly manage our project's code and configuration so we can undo changes there
to; Vagrant can only do so much to help us!

Connecting to the virtual machine over SSH
If we run the vagrant ssh command, Vagrant will then connect to the VM over
SSH. Alternatively, we could use SSH to connect to localhost with port 2222, and this
will tunnel into the VM.

Let's see it in action:

If we are running Vagrant on a Windows machine, we won't have a built-in SSH client.
We can use a client such as PuTTY to connect to Vagrant. PuTTY can be downloaded
from http://www.chiark.greenend.org.uk/~sgtatham/putty/. More information
is available on the Vagrant website for configuring PuTTY to work with Vagrant
(http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Integration between the host and
the guest
Without any form of integration between the host machine and the guest, we
would have a virtual server running on top of our own operating system, which
is not particularly useful. We need our own machine to be capable of integrating
tightly with the guest (virtual machine).

Port forwarding
Although the VM is running on our own machine, it acts and behaves like a
completely different machine. Sometimes this is what we want, other times it isn't.
We may want to integrate the two more tightly. One option is port forwarding, where
we can tunnel a port from the virtual machine to a port on the host machine. If, for
example, we have a web server running on our own machine, we obviously don't want
to map the web server port from Vagrant onto the same port, otherwise there would
be a conflict. Instead, we can map it to another port. If we map the web server port on
the VM to port 8888 on the host, then visiting http://localhost:8888 on our own
machine would show us the web service we run on the guest.

Port forwarding is done via lines in the Vagrantfile file, we simply provide the
guest and host ports we wish to map:

config.vm.network :forwarded_port, guest: 80, host: 8888

If we have other Vagrant-managed virtual machines on our computer, which we
wish to run simultaneously, we can enable auto_correct on specific ports; this way,
if a conflict is found (for example, two VMs trying to map to the same port), one will
try a different port instead:

, auto_correct: true

Ports below a certain range need elevated/root privileges on the host
machine, so you may be asked for your administrative password.

Synced folders
Synced folders allow us to share a folder between the host and the guest. By default,
Vagrant shares the folder containing the Vagrant project as /vagrant on the VM. We
can use the following in our Vagrantfile to sync more folders if we wish:

config.vm.synced_folder "/Users/michael/assets/"

"/var/w

ww/assets"

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Vagrant Boxes and Projects

[28]

The first parameter is the path to the folder on our machine, the second being the
mount point on the VM. If we use a relative path on our machine, it would be
relative to the project folder.

The Network File System can give us better performance with synced folders than
the default settings, this won't work on Windows hosts, and on Linux/OS X hosts
will require root privileges. We can enable the NFS on a per synced folder basis by
adding the following to the preceding line:

, :nfs => true

Networking
By default, our Vagrant virtual machines are only accessible from the machines we
run Vagrant on. If we map ports to our host, then we can share services running on
the VM with our colleagues within our network. If we want to allow our colleagues
to access our Vagrant-managed VMs directly, we can attach the VM to our internal
network, and VirtualBox will bridge the network between our machine and the VM
and the internal network between our machine and the rest of the machines in your
home or office:

config.vm.network :private_network, ip: "192.168.1.100"

Auto-running commands
One of the key concepts within Vagrant is provisioning. This involves turning a basic
virtual machine with a base operating system into a server that is ready to run for
your project, meeting your requirements. There are three key provisioning options
within Vagrant:

• SSH
• Puppet
• Chef

Puppet and Chef are both third-party tools which Vagrant supports out-of-the-box,
and provide specific languages for configuring servers in an agnostic way that can
be used for different operating systems. The next two chapters will discuss these in
more detail.

SSH provisioning involves running a series of commands on the virtual machine
over SSH when the VM is first setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

There are two ways we can use SSH provisioning. We can either directly run a
command from our Vagrantfile file with the following line:

config.vm.provision :shell, :inline => "sudo apt-get update"

Alternatively, we can tell Vagrant to run a particular shell script (the location of the
script specified is relative to our project root, that is, /vagrant):

config.vm.provision :shell, :path => "provision.sh"

This shell script could contain all of the commands we need to convert a base box,
which contains very little, to a box which supports our project and application,
perhaps installing web and database servers.

Summary
In this chapter, we created projects with Vagrant, pulling in Vagrant boxes to use.
We also looked at the commands needed to manage these boxes and to manage
the Vagrant virtual machines. We looked at how we can configure our Vagrant
environment with networking, synced folders, and forwarded ports. Finally, we
looked at how to provision software on our VM with SSH commands.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet
Vagrant is a very powerful tool because of the two concepts it can manage for us:

• Virtualization
• Provisioning

We have already learned through Chapter 1, Getting Started with Vagrant and
Chapter 2, Managing Vagrant Boxes and Projects how to use Vagrant to manage virtual
machines for us, and this is very useful. However, at this stage, these virtual machines
are dumb; they have very little software installed for us to use, and they are certainly
not configured for our projects. This is where provisioning comes in. Provisioning
automates the process of turning a base machine into one, which is configured for
use with a specific project.

In this chapter, we are going to quickly look through the basics of Puppet, one of the
three main provisioning options available within Vagrant. We won't look at it within
a Vagrant context just yet; we will simply look at how a Puppet works, and how
we can use it. In Chapter 5, Provisioning with Vagrant using Puppet and Chef, we will
look at how to connect what we will learn in this chapter with Vagrant itself. In this
chapter, we will learn:

• How the Puppet works
• The basics behind the Puppet modules and manifests
• How to use Puppet to perform the following tasks:

 ° Install software
 ° Manage files and folders within the filesystem
 ° Manage cron jobs
 ° Run commands
 ° Manage users and groups

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[32]

• How to use third party Puppet modules and Puppet Forge
• How to manually run Puppet to provision a machine

Puppet itself is a large topic, and subject of several books. For a more detailed look at
it, Packt have some titles dedicated to it:

• Puppet 2.7 Cookbook, http://www.packtpub.com/puppet-2-7-for-
reliable-secure-systems-cloud-computing-cookbook/book

• Puppet 3 Beginner's Guide, http://www.packtpub.com/puppet-3-
beginners-guide/book

Provisioning
Within this context, Provisioning is the process of setting up a virtual machine so
that it can be used for a specific purpose or project. Typically, this involves installing
software, configuring the software, managing services running on the machine, and
even setting up users and groups on the machine.

For a web-based software project, provisioning will likely entail the installation of a
web server, a programming language, and a database system. Configuration changes
will be needed to set up a database on the database system and to allow the web
server to write to specific folders (to deal with user uploads).

Without this provisioning process, we would have an almost vanilla install
of an operating system which contains a synced copy of our project folder; this
vanilla install wouldn't be usable as a development environment for our project.
Provisioning takes us to the next level and gives us a fully working environment
for our project.

About Puppet
Puppet is a provisioning tool which we can use to set up a server for use for a project.
The configuration which determines how the server needs to be set up can be stored
within our Vagrant project and can be shared with teammates through a version
control, ensuring everyone gets an up-to-date copy of the required development
environment.

Information about how a server should be configured, that is, its software, files, users,
and groups, is written into files known as the Puppet manifests. These manifests are
written by using Puppet's own language, which is a Ruby Domain Specific Language.
Puppet takes this information and compiles it into a catalog that is specific for the
operating system it is being applied to. The catalog is then applied to the machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

For our purposes we will be using Puppet in standalone mode (this is also how
Vagrant uses it). Standalone mode means that everything runs from one machine.
Puppet also has client-server capabilities, where you can define the Puppet manifests
for all the servers in your infrastructure, on a central host, and it keeps your
individual servers at the required level of configuration.

Puppet is idempotent, which means running Puppet on a machine multiple times
has the same effect as running it only once. In effect Puppet ensures that conditions
are met, and if they are not, it will perform actions to ensure they are, for example,
if we were to ensure Apache was installed, Puppet would install it if it was not
already installed, if it was already installed it would do nothing. This means we
can re-provision with Puppet many times without any detrimental effect. This is
useful as we can use it to keep the server in sync with our Puppet manifests if they
were to change.

Creating modules and manifests with Puppet
Puppet is made up of a manifest file, and a number of modules (which also contain
manifests and other resources). The default manifest specifies which modules are
to be used, and depending on the module, provides customization options to it (for
example, the Puppet module for supervisord allows us to specify any number of
processes which should be managed by using supervisord through the module itself).

Modules make use of resources within Puppet to control and configure the machine,
and these modules can be imported to run in a specific sequence, through stages.

Puppet classes
Puppet modules typically consist of classes, which in turn utilize a number of
resource types (in this example, the package resource type, to install a software
package) to achieve a specific requirement for our server. It effectively allows us
to bundle a number of these resource types in a way which means we can simply
include the class by its name and have all of the instructions from within it executed.

A class in its most basic form is structured as follows:

class apache {
 package { "apache2":
 ensure => present,
 require => Exec['apt-get update']
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[34]

For its most basic use within Vagrant, classes like this would be saved as default.
pp within the modules/apache/manifests/ folder. The class can contain many
resource types to achieve a desired goal (for instance, installing the Apache package
isn't the same as preparing the web server fully for a project, related tasks can be
bundled into the same class).

Default Puppet manifests
For a given project, Puppet modules are typically all located in a specific modules
directory. Many modules can be customized when they are run, an example being
the supervisord module, it simply provides the structure for us to customize for each
process we want it to manage.

Because of this we need to have a default Puppet manifest that includes a list of
modules to be run, and any configurations for them. Because Puppet is aware of our
module folder location when we run it (and when it is run through Vagrant) we just
list the modules to include and run.

A basic manifest, which would include and run the Apache class we wrote earlier,
would be:

import "apache"
include apache

I've mentioned the supervisord module (https://github.com/plathrop/puppet-
module-supervisor) a few times as a module which is designed to be used for
multiple different things which the developer using it can customize. Supervisord
is a tool which maintains a number of running processes, for example, if you have
a background worker in a web application to resize images, supervisor might be
responsible for keeping five workers running at any one instance, re-spawning them
when one has finished. The following is an example of how this module would be
used in a default Puppet manifest:

supervisor::service {
 'resize_images':
 ensure => present,
 enable => true,
 command => '/usr/bin/php /vagrant/src/private/index.php
 img_resize',
 user => 'root',
 group => 'root',
 autorestart => true,
 startsecs => 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

 num_procs => 5,
 require => [Package['php5-cli'], Package['beanstalkd']];
}

supervisor::service {
 email':
 ensure => present,
 enable => true,
 command => '/usr/bin/php /vagrant/src/private/index.php
 email',
 user => 'root',
 group => 'root',
 autorestart => true,
 startsecs => 0,
 num_procs => 5,
 require => [Package['php5-cli'], Package['beanstalkd']];
}

Here we are instructing Puppet to use the supervisord module twice, to set up and
manage two workers for us. For each of the workers we have a set of five processes
to run, and we have to set the user and group to run them as, and we have defined
PHP's command line interface and the beanstalkd worker queue as requirements for
the workers. This illustrates the power that Puppet modules have.

Resources
Puppet provides a range of resource types which we can utilize to create our
configuration files. These resource types are translated and compiled depending
on the operating system being used. For example, if we were to use the package
resource type to install some software, this would use apt-get on Ubuntu and Yum
on Fedora operating systems. A small number of resource types are operating system
specific, for example, the scheduled_task resource type is designed specifically for
Windows, and the cron type is designed for Linux and UNIX based systems.

Resource types available include:

• cron: To manage cron jobs on Linux and UNIX based systems
• exec: To run commands at the terminal/command prompt
• file: To manage and manipulate files and folders on the filesystem
• group: To manage user groups
• package: To install software
• service: To manage running services on the machine
• user: To manage user accounts on the machine

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[36]

When resource types are used directly (for example, we use the Package resource
type to install some software) they are used in lower case (package), however, when
we refer to a resource type we have used, for example, as a requirement for another
Puppet action, we reference them with a leading capital letter (Package).

An example of this is as follows:

package { "apache2": ensure => present, require =>
 Exec['apt-get update'] }

We are telling Puppet to install the Apache2 package (lower case p for package), but
when we specify the requirement of a previously executed exec command, we use
a leading capital letter. The options within this instruction for Puppet (ensure and
require keywords) are called parameters.

A full list of resource types is available on the Puppet website: http://docs.
puppetlabs.com/references/latest/type.html.

When using a resource type, a name is provided (in the preceding instance, this is
Apache2) this is often dual purpose, serving both as a way for us to reference the
action (in this case, the package being installed) and also as an instruction (in this
case, what package Puppet needs to install). When it comes to the Exec resource
type, the name is the command we wish to run, by default we need to provide the
full path to the command we run, we can avoid that by providing the path from
which the command should be run as a parameter.

Resource requirements
Certain things we do with Puppet will require other actions to have been performed
first. These can be defined by using the require parameter, and we can specify
multiple requirements.

If we need to run or install something after both the MySQL Server and the MySQL
Client packages have been installed, we would use the require parameter to define
these as follows:

require => [Package['mysql-client'], Package['mysql-server']]

The outer square brackets are used because we are defining multiple requirements,
so we wrap them in square brackets and separate them with commas.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Resource execution ordering
Sometimes, we need to run specific blocks of the Puppet code before other blocks.
In most cases, we can use the require parameter to get around this problem.
However, if we have one exec command requiring other exec commands, it starts
to get a little hairy.

Puppet has a default stage within which all commands run. We can create our own
stages which run before or after this stage, which allows us to force commands to be
run in specific orders.

We can define stages within our default puppet manifest and then instruct Puppet
to run certain classes from within that stage. If, for example, we wanted to run our
Apache class before anything else, we could create a stage to run first and put the
Apache class within that stage as follows:

stage { 'first': before => Stage[main] }
class {'apache': stage => first}

This creates a stage called first, anything assigned to this stage will be executed
before the default Puppet stage; next it places the Apache class within that stage.
Once we have a named stage such as first we can then create other stages which
can run before this one too.

Installing software
Let's say we want to install Apache on our server. There are three typical steps
involved in this process:

1. Update our package manager
2. Install the Apache package
3. Run the Apache service

Because the first step is different depending on the operating system we are running,
we might want to move this out of Puppet at a later stage; however, we will use it
within Puppet for the time being. Any operating specific commands (such as this)
are written for Ubuntu, which is the operating system we are using with Vagrant.
If you are not using Ubuntu, the exec command should be re-written to update the
package manager on your system.

This example is purely to illustrate the process of putting together
a simple module. There are many existing modules available on
Puppet Forge, which we will come to later.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[38]

Updating our package manager
In order to update our package manager, we need to run a command on the server.
This can be achieved by using the Exec resource within Puppet:

exec { 'apt-get update':
 command => '/usr/bin/apt-get update',
 timeout => 0
}

This instructs Puppet to run the apt-get update command. We have set a timeout
of zero so that if it takes a while (and after a fresh install of an operating system
through Vagrant, it might), Puppet will run it for as long as it takes, overriding the
default timeout.

This isn't the most elegant of approaches, especially with it being
operating system specific and subsequently a requirement for most
of our other commands. In Appendix A, we will build a LAMP
server project with Vagrant and Puppet, and in the example there
we use Vagrant's SSH provisioning options to update the package
manager before we install the other software. Most base boxes don't
have up-to-date package details to save space and due to their age,
so updating the package manager is required.

Installing the Apache package
We can use the Package resource to ensure that Apache is installed, and if it isn't,
it will be installed, as follows:

package { "apache2":
 ensure => present,
 require => Exec['apt-get update']
}

Here we have told Puppet to ensure that the Apache2 package is present. We
have added our apt-get update command as a prerequisite, so we know that
our packages will be up-to-date.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Running the Apache service
Finally, make sure that Apache uses the Service resource. While Apache will
automatically run when we install it, we may connect to our new server and alter
settings or services by mistake. If this happens, we can simply re-run the provisioner;
as Apache will already be installed it won't re-install it, but the Service resource will
force Puppet to ensure that the Apache service is running. Obviously, this can't be
run if Apache isn't installed, so the Apache2 package is a prerequisite.

service { "apache2":
 ensure => running,
 require => Package['apache2']
}

File management
We can use the File resource within Puppet to manage files and folders within the
filesystem. Let us look at some examples, which allow us to:

• Copy files
• Create symlinks
• Create folders
• Create multiple folders in one go

Copying a file
One common file operation we might want to perform would be to take a
configuration file from our project and copy it into our virtual machine. One particular
use case would be an Apache configuration file; we might want to define some virtual
hosts and other settings in a file which we can share with our colleagues.

While this works well and can get us up and running quickly, there
are modules out there which allow us to configure Apache and
other software directly from Puppet. This typically works by the
module storing a template file (a copy of the configuration file with
placeholders in it) and then inserting data we define within Puppet
into the template and copying the file onto the machine. However, for
the sake of this introductory chapter we will just copy a file across.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[40]

The file resource type allows us to create files, folders, and symlinks. In order to
create a file (or replace the contents of an existing file with another file), we simply
tell Puppet the file we want to create or replace (the destination), the source (that is,
the file to copy and put into the destination), and the user and group who should
own the file:

file { '/etc/apache2/sites-available/default':
 source => '/vagrant/provision/modules/apache/files/default',
 owner => 'root',
 group => 'root',
require => Package['apache2']
}

As this is an Apache configuration file, it is worth ensuring that Apache is already
installed, otherwise Apache would override this when it installs the first time and
wouldn't make the process idempotent.

A note about file locations: The source file in the above file resource
code is held within a Vagrant environment within the Puppet module
itself. We can provide two kinds of file path, either the full path
to the file on the machine which Puppet is running (our Vagrant
environment) or a path relative to Puppet modules. These Puppet
paths are structured as: puppet:///modules/apache/default.
The difference you will note is that it automatically looks in the files/
folder within the Apache folder, we don't need to specify that.

Creating a symlink
If we omit the source parameter and instead add an ensure parameter and set that
to link, we can create a symlink. A target is used to define where the symlink should
point to, as shown in the following code:

file { '/var/www/vendor':
 ensure => 'link',
 target => '/vagrant/vendor',
 require => Package['apache2']
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Creating folders
Similar to the preceding symlink code, this time we simply need to set ensure to a
directory. This will then create a directory for us, as follows:

file{ "/var/www/uploads":
 ensure => "directory",
 owner => "www-data",
 group => "www-data""
 mode => 777,
}

We can use the mode parameter to set the permissions of the folder (this also can be
used for files we create and manage).

Creating multiple folders in one go
In many web projects we may need to create a number of folders within our servers
or our Vagrant virtual machines. In particular, we may want to create a number of
cache folders for different parts of our application, or we may want to create some
upload folders.

In order to do this, we can simply create an array containing all of the folders we
want to create. We can then use the file resource type and pass the array to create
them all as follows:

$cache_directories = ["/var/www/cache/", "/var/www/cache/pages",
 "/var/www/cache/routes", "/var/www/cache/templates",
]

file { $cache_directories:
 ensure => "directory",
 owner => "w"w-data",
 group => "www-data",
 mode => 777,
}

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[42]

cron management
The cron resource type lets us use Puppet to manage cron jobs which we need to
run on the machine. We provide a name, in this case web_cron, the command to
run, the user to run the command as, and the times at which to run the command,
as shown in the following code:

cron { web_cron:
 command => "/usr/bin/php /vagrant/cron.php",
 user => "root",
 hour => [1-4],
 minute => [0,30],
}

Puppet provides us with different configuration options to define the times at
which a cron should be run, which include:

• Hour: between 0 and 23 inclusive
• Minute: between 0 and 59 inclusive
• Month: between 1 and 12 inclusive
• Monthday: between 1 and 31 inclusive
• Weekday: Sunday (7 or 0) to Saturday (6)

If one of these is omitted from the configuration, then Puppet runs it for every one
of the available options (that is, if we omit month, it will run for January through to
December). When defining the dates and times, we can either provide a range, for
example, [1-5], or specifics, such as [1, 2, 10, 12].

Running commands
The Exec resource type allows us to run commands through the terminal on the
machine we are provisioning. One caveat with the exec command is that if you
re-provision with Puppet it will re-run the command, which depending on the
command could be damaging. What we can do with the Exec resource type is set the
creates parameter. The creates parameter tells Puppet of a file that will be created
when the command is run, if Puppet finds that file, it knows that it has already been
run and won't run it again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

Take for example, the following configuration, this would use the PHP composer tool
to download dependencies. The command itself creates a file called composer.lock
(we could, of course, use the exec command itself to create a file manually, perhaps
by using the touch command). Because of the lock file that is created, we can use the
creates parameter to prevent the command from being executed if it has previously
been executed and has created the lock file, as shown in the following code:

exec{ "compose":
 command => '/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm –f
 /var/www/repo/composer.lock && /usr/bin/curl –s
 http://getcomposer.org/installer | /usr/bin/php && cd
 /var/www/repo && /usr/bin/php /var/www/repo/composer.
 phar install',
 require => [Package['curl'], Package['git-core']],
 creates => "/var/www/repo/composer.lock",
 timeout => 0
}

Manage users and groups
The user and group resource types let us create and manage users and groups.
There are differences between different operating systems as to what Puppet can
do with the users and groups and how this works. The following code is tested
on Ubuntu, Linux. More information on the differences for users and groups on
different platforms can be found on the Puppet website: http://docs.puppetlabs.
com/references/latest/type.html#user.

Creating groups
The simplest way to create a group is simply to set the ensure parameter to present.

group { "wheel":
 ensure => "present",
}

Creating users
To create a user, the basic information we should provide is:

• The username
• The fact we want the user to exist (ensure => present)
• The group (gid) the user should be part of
• The shell to use for the user

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[44]

• The home directory for the user
• If we want Puppet to manage the home directory for the user. In this case it

will create the folder for us if it does not exist
• The password for the user
• The requirement that we need the wheel group in place first

The code which will then create our user is as follows:

user { "developer":
 ensure => "present",
 gid => "wheel",
 shell => "/bin/bash",
 home => "/home/developer",
 managehome => true,
 password => "passwordtest",
 require => Group["wheel"]
}

Updating the sudoers file
It's all well and good being able to create users and groups on our machine, however,
one thing that we can't do by using the user and group resource types is define a
user or group as having elevated privileges, unless we make the user a part of the
root group.

We can use an exec command to push some text to the end of our sudoers file; the
text we need to push just tells the file that we want to give the wheel group the sudo
privileges, as shown in the following code:

exec { "/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers":
 require => Group["wheel"]
}

Subscribe and refresh only
Sometimes we want to have a Puppet command run multiple times when other
commands have finished. One example is restarting Apache. We would want
to do this:

• When we import a new configuration file
• When we install Apache modules such as PHP support and mod_rewrite
• If we add new virtual hosts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

This can be achieved by using the subscribe and refreshonly parameters.
The subscribe parameter instructs the command to run every time any of the
commands in the subscribe option have been run.

The refreshonly parameter, when set to true, instructs the command to only run
when one of the commands it subscribes to, has run (leaving this out would mean
the command is also run in its own right):

exec { "reload-apache2":
 command => "/etc/init.d/apache2 reload",
 refreshonly => true,
 subscribe => File['/etc/apache2/sites-available/default'],
}

Here the command to reload Apache will only be run when the new configuration
file has been loaded. We can, of course, extend the subscribe parameter to contain
other things such as modules and other configurations, as discussed.

Puppet modules
There are many existing, well written, re-usable Puppet modules freely available to
use. Puppet Forge is a collection of these, available at http://forge.puppetlabs.
com/. It is always worth looking to see if there is an existing module which solves
your problem before writing your own.

Using Puppet to provision servers
We are going to look at how to use Puppet with Vagrant in Chapter 5, Provisioning
with Vagrant using Puppet and Chef, however, Puppet can also be run independently.
Provided Puppet is installed (it will be on most Vagrant base boxes, but if you want
to run it on another machine, it might not be, so install it first), you can use the apply
subcommand, passing with it the location of the modules folder and the default
manifest to apply, as follows:

puppet apply --modulepath=/home/michael/provision/modules
 /home/michael/provision/manifests/default.pp

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Puppet

[46]

Summary
In this chapter we had a whirlwind tour of Puppet, and explored the various ways
we could use it to provision a server for our projects. This included:

• Installing software with Puppet
• Managing cron jobs with Puppet
• Managing users and groups with Puppet
• Running commands with Puppet
• How modules, classes, and stages work
• How to use Puppet to provision a machine

In the next chapter we will look at Chef, another provisioning tool which has support
built into Vagrant.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef
Chef, as with Puppet, is another provisioning tool which makes it easy for us to take
a base operating system install and turn it into a full-fledged server suited to the
needs of our project.

In this chapter, we are going to quickly look through the basics of Chef. We won't
look at it within a Vagrant context just yet; we will simply look at how Chef works,
and how we can use it. In Chapter 5, Provisioning with Vagrant using Puppet and Chef,
we will look at how to connect what we will learn in this chapter with Vagrant itself.
In this chapter we will learn:

• How Chef works
• The basics behind Chef cookbooks and recipes
• How to use Chef to perform the following tasks:

 ° Install a software
 ° Manage files and folders within the filesystem
 ° Manage cron jobs
 ° Run commands
 ° Manage users and groups

• How to use third party Chef cookbooks and recipes
• How to manually run Chef to provision a machine

Chef itself is a large topic, and subject of several books. For a more detailed look at
Chef, Packt has some titles dedicated to provisioning with Chef:

• Chef Infrastructure Automation Cookbook, http://www.packtpub.com/chef-
infrastructure-automation-cookbook/book

• Instant Chef Starter, http://www.packtpub.com/chef-starter/book

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef

[48]

Knowing about Chef
Chef is a provisioning tool which we can use to set up a server for use for a project.
The configuration which determines how the server needs to be setup can be
stored within our Vagrant project and can be shared with teammates through
version control, ensuring everyone gets an up-to-date copy of the required
development environment.

Information about how a server should be configured, that is. Its software, files,
users, and groups, is written into files known as Chef recipes. These recipes are
written as Ruby files. Chef takes this information and matches it to providers
which are used to execute the configuration on the machine in a compatible way.

For our purposes we will be using Chef Solo, which is its standalone mode (this is
also how Vagrant uses it). Chef Solo means that everything runs from one machine.
Chef also has client-server capabilities where you can define the Chef cookbooks
and roles for all the servers in your infrastructure on a central host, and it keeps
your individual servers at the required level of configuration.

As with Puppet, Chef is also idempotent, which means running Chef on a machine
multiple times has the same effect as running it only once.

Creating cookbooks and recipes with
Chef
Chef instructions are recipes, which are bundled together in cookbooks. A cookbook
contains at least one recipe, which performs some actions. Cookbooks can contain
multiple recipes and other resources such as template and files.

At its most basic level, a cookbook is a folder (named as the name of the cookbook)
containing at least a recipes folder which contains at least a default recipe file,
default.rb. Files are typically stored in a files folder within the cookbook folder,
and template files within the templates folder.

While both, Puppet and Chef use Ruby, Puppet is a Domain
Specific Language which makes it look and feel like its own
language, whereas Chef is structured more like Ruby itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[49]

Resources – what Chef can do
Chef uses resources to define the actions and operations, which can be performed
against the system. Resources are mapped to a Chef code, which varies depending
on the platform/operating system being used. For example, on an Ubuntu machine
the package resource is mapped to apt-get. Some of these system specific
instructions can also be accessed directly via their own resources, apt_package, for
example, is used to manage packages on Ubuntu and Debian based systems, whereas
by using the package resource Chef will work out which package manager to use
based on the operating system.

Resource types available include:

• cron: To manage cron jobs on Linux and Unix based systems
• execute: To run commands at the terminal/command prompt
• file: To manage and manipulate files and folders on the filesystem
• group: To manage user groups
• package: To install software
• service: To manage running services on the machine
• template: To manage file contents with an embedded Ruby template
• user: To manage user accounts on the machine

Each resource can be configured with different attributes, as we will discuss in
this chapter. A full list of the resource types is available from the Opscode website:
http://docs.opscode.com/resource.html.

Installing software
Let's say we want to install Apache on our server. There are three typical steps
involved in this process:

1. Update our package manager
2. Install the Apache package
3. Run the Apache service

Because the first step is different depending on the operating system we are running,
we might want to move this out of Chef at a later stage; however we will use it
within Chef for the time being. Any operating specific commands (such as this)
are written for Ubuntu, which is the operating system we are using with Vagrant.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef

[50]

Updating our package manager
In order to update our package manager, we need to run a command on the server.
This can be achieved by using the execute resource within Chef, as follows:

execute "apt-get update" do
 ignore_failure true
end

This instructs Chef to run the apt-get update command. As the name of the
resource (the part provided in quotes after the name of the resource) is the command
we want to run, this will be executed. If we used a friendly name instead, then we
would need to provide a command attribute as follows:

execute "update-package-manager" do
 command "apt-get update"
 ignore_failure true
end

By default, execute resources have a timeout of 3600 seconds, however, this
can be overridden by providing a timeout attribute to the resource and a time
value, for example:

execute "apt-get update" do
 ignore_failure true
 timeout 6000
end

Installing the Apache package
We can use the package resource to ensure that Apache is installed, and if it isn't,
it will be installed, as follows:

package "apache2" do
 action :install
end

Here, we have told Chef to ensure that the Apache2 package is installed. Provided
we have included the recipe or cookbook containing the apt-get update command
before we include the preceding code, then our package manager will be up-to-date.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

Running the Apache service
Finally, make sure that Apache uses the service resource. While Apache will
automatically run when we install it, we may connect to our new server and alter
settings or services by mistake. If this happens, we can simply re-run the provisioner;
as Apache will already be installed it won't re-install it, but the service resource will
force Chef to enable the Apache service (so it automatically starts on system boot)
and start the service when the command is run, as follows:

service "apache2" do
 supports :status => true, :restart => true, :reload => true
 action [:enable, :start]
end

Understanding file management
We can use cookbook_file, directory, link, and template resources within Chef
to manage files and folders within the filesystem. Let's look at some examples which
allow us to:

• Copy files
• Create symlinks
• Create folders
• Create multiple folders in one go

Copying a file
One common file operation we might want to perform would be to take a
configuration file from our project and copy it into our virtual machine. One particular
use case would be an Apache configuration file; we might want to define some virtual
hosts and other settings in a file which we can share with our colleagues.

While this works well and can get us up and running quickly,
there are modules out there which allow us to configure Apache
and other software directly from Chef. This typically works by the
module storing a template file (a copy of the configuration file with
placeholders in it) and then inserting data we define within Chef into
the template and copying the file onto the machine. However, for the
sake of this introductory chapter we will just copy a file across.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef

[52]

The cookbook_file resource allows us to copy a file from a Chef cookbook onto the
machine, as follows:

cookbook_file "/etc/apache2/sites-available/default" do
 backup false
 action :create_if_missing
end

Because we have omitted the source and path attributes, Chef makes some
assumptions. It takes the basename (in effect the last element) of the name and uses
this as the source (the basename of /etc/apache2/sites-available/default
being default) and uses the name as the path (destination). The source file should be
located in the files folder within the cookbook's own folder.

As this is an Apache configuration file, it is worth ensuring Apache is already
installed, otherwise Apache would override this when it installs the first time, and
wouldn't make the process idempotent. We can do this by notifying the Apache2
service, for example:

cookbook_file "/etc/apache2/sites-available/default" do
 backup false
 action :create_if_missing
 notifies :restart, "service[apache2]", :delayed

end

The delayed option means all of these restart requests will be queued up and
executed at the end of Chef's execution; the opposite of this being immediately.

Creating a symlink
The link resource allows us to create symbolic links to the existing files and folders
on the filesystem. If, for instance, we wanted to map a public folder within our
web servers root directory to a folder within our Vagrant shared folder, we can do
this as follows:

link "/var/www/public" do
 to "/vagrant/src/public"
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

Creating folders
We can use the directory resource to create folders; this is particularly useful for
scenarios such as folders to hold files (avatars, attachments, and so on) uploaded by
users of a web application:

directory "/var/www/uploads" do
 owner "root"
 group "root"
 mode 00777
 action :create
end

We can use the mode parameter to set the permissions of the folder and the owner
and group parameters to set the user and groups who own the directory (these also
can be used for files we create and manage too). Finally, the :create action is used
to ensure the folder is created.

Creating multiple folders in a single process with
looping
In many web projects, we may need to create a number of folders within our servers
or our Vagrant virtual machines. In particular, we may want to create a number of
cache folders for different parts of our application, or we may want to create some
upload folders.

In order to do this, we can simply create an array containing all of the folders we
want to create. We can then use the directory resource type and loop through a
list of directory names:

%w{dir1 dir2 dir3}.each do |dir|
 directory "/tmp/mydirs/#{dir}" do
 mode 00777
 owner "www-data"
 group "www-data"
 action :create
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef

[54]

Managing cron
The cron resource type lets us use Chef to manage cron jobs which we need to run
on the machine. We provide a name, in this case web_cron, the command to run, the
user to run the command as, and the times at which to run the command, as shown
in the following code:

cron "web_cron" do
 action :create
 command "/usr/bin/php /vagrant/cron.php"
 user "root"
 hour "1-4"
 minute "0,30"
end

Chef provides us with various different configuration options to define the times at
which a cron should be run, these include:

• hour: between 0 and 23 inclusive
• minute: between 0 and 59 inclusive
• month: between 1 and 12 inclusive
• day: between 1 and 31 inclusive
• weekday: Sunday (0) – Saturday (6)

If one of these is omitted from the configuration, then Chef runs it for every one
of the available options (that is, if we omit month, it will run for January through
to December). When defining the dates and times, we can either provide a range,
for example, "1-5", or specifics, such as 1,2,10,12. We can also provide an emailto
property to e-mail the resulting output from the cron to an e-mail address of
our choosing.

Running commands
The execute resource allows us to run commands through the terminal on the
machine we are provisioning. One caveat with the exec command is that if you
re-provision with Chef it will re-run the command, which depending on the
command could be damaging. What we can do with the execute resource is set the
creates parameter. The creates parameter tells Chef of a file that will be created
when the command is run, if Chef finds that file, it knows that it has already been
run, and won't run it again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

Take, for example, the following configuration, this would use the PHP composer
tool to download dependencies. The command itself creates a file called composer.
lock (we could, of course, use the exec command itself to create a file manually,
perhaps using the touch command). Because of the lock file that is created, we can
use the creates parameter to prevent the command from being executed multiple
times when a lock file is found:

execute "compose" do
 command "/bin/rm -rfv /var/www/repo/vendor/* && /bin/rm –f
 /var/www/repo/composer.lock && /usr/bin/curl –s
 http://getcomposer.org/installer | /usr/bin/php && cd
 /var/www/repo && /usr/bin/php /var/www/repo/composer
 .phar install"
 creates "/var/www/repo/composer.lock"
 timeout 6000
end

Managing users and groups
The user and group resource types let us create and manage users and groups.
There are differences between different operating systems as to what Chef can do
with the users and groups and how this works.

Creating groups
The simplest way to create a group is simply to set the action to :create, as follows:

group "wheel" do
 action :create
end

Creating users
To create a user, the basic information we should provide is:

• The username
• The fact we want to create the user
• The group (gid) the user should be part of
• The shell to use for the user
• The home directory for the user
• If we want Chef to manage the home directory for the user; in this case it

will create the folder for us if it does not exist
• The password for the user

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Chef

[56]

The code which will then create our user is as follows:

user "developer" do
 action :create
 gid "wheel"
 shell "/bin/bash"
 home "/home/developer"
 supports {:manage_home => true}
 password "passwordtest"
end

Updating the sudoers file
It's all well and good being able to create users and groups on our machine, however,
one thing that we can't do by using the user and group resource types is define a
user or group as having elevated privileges, unless we make the user a part of the
root group.

We can use an exec command through the execute resource to push some text to the
end of our suoders file; the text we need to push simply tells the file that we want to
give the wheel group sudo privileges. The command we would need to execute is:

/bin/echo \"%wheel ALL=(ALL) ALL\" >> /etc/sudoers

Knowing common resource functionalities
There is also a set of common functionality available to all resources. This common
functionality includes:

• The ability to do nothing with the :nothing action
• Shared attributes available to all resources: ignore_failure, provider,

retries, retry_delay, and supports
• The not_if and only_if conditions to ensure actions only run when certain

conditions are met; these are commands which are run and depending on
their return value, recipes, and resources can be ignored.

• Notifications to instruct other resources that another action
has completed, or for a resource to take action if another resource
changes (subscribes)

Using Chef cookbooks
There are many existing, well written, re-usable Chef cookbooks freely available to
use. The Opscode community site contains a collection of these, http://community.
opscode.com/cookbooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

It is always worth looking to see if there is an existing cookbook which solves your
problem before writing your own.

Using Chef to provision servers
We are going to look at how to use Chef with Vagrant in Chapter 5, Provisioning
with Vagrant using Puppet and Chef, however, Chef can also be run in its own right.
Provided Chef is installed (it will be on most Vagrant base boxes, but if you want to
run it on another machine, it might not be, so install it first), you can use the chef-
solo command, passing with it the location of a configuration file to use and a JSON
file which contains attributes we wish to use (this should include the rub list, which
is the list of recipes and cookbooks we wish to use) as follows:

chef-solo –c /home/michael/chefconfig.rb –j
 /home/michael/attributes.json

For more information refer to:

• Chef Solo configuration: http://docs.opscode.com/config_rb_solo.html
• Apply recipes to run lists: http://docs.opscode.com/essentials_

cookbook_recipes.html#apply-to-run-lists

• Anatomy of a Chef run: http://docs.opscode.com/essentials_nodes_
chef_run.html

• Chef tutorial: http://jonathanotto.com/blog/chef-tutorial-in-
minutes.html

Summary
In this chapter we had a whirlwind tour of Chef, and explored the various ways we
could use it to provision a server for our projects. This included:

• Installing software with Chef
• Managing cron jobs with Chef
• Managing users and groups with Chef
• Running commands with Chef
• How recipes and cookbooks work
• How to use Chef to provision a machine

In the next chapter we will look at how to use both Chef and Puppet to provision a
machine within the context of Vagrant.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Vagrant
using Puppet and Chef

In Chapter 3, Provisioning with Puppet, and Chapter 4, Provisioning with Chef, we had
an introduction to both, Puppet and Chef, which are provisioning tools with support
built into Vagrant. We, however, looked at how the tools worked generally; we
didn't look at how to use them with Vagrant.

In this chapter you will learn:

• Using Puppet within Vagrant
• Using Chef within Vagrant
• About the other built-in provisioners:

 ° Re-capping how to provision with the built-in SSH provisioner
 ° Using the Ansible provisioner

• Working with multiple provisioners
• How we can override the provisioning tools through the command line

Provisioning within Vagrant
Vagrant relies on base boxes for the guest virtual machines; these are specifically pre-
configured VM images, which have certain software packages pre-installed and pre-
configured. Puppet and Chef are two such software packages that are pre-installed.
Vagrant has its own interface through to these packages from the host machine. This
means we can provide some configuration in our Vagrant file and Vagrant will pass
this information to the relevant provisioners on the guest VM.

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Vagrant using Puppet and Chef

[60]

Provisioning with Puppet on Vagrant
Vagrant supports two methods of using Puppet:

• Puppet in a standalone mode, by using the Puppet apply command
on the VM

• Puppet in client/server mode, whereby the VM (by using the Puppet agent)
will be configured from a central server

Let's look at how to configure Vagrant with Puppet using these two different methods.

Using Puppet in a standalone mode
Puppet standalone is the simplest way to use Puppet with Vagrant, we simply tell
Vagrant where we have put our Puppet manifests and modules, and what manifest
should be run. The smallest amount of configuration we need within our Vagrant file
in order to use Puppet is this:

config.vm.provision :puppet

This should go within the Vagrant.configure("2") do |config| … end block of
code within the Vagrant file.

Along with this configuration we will need a Puppet manifest called default.pp
in the manifests folder of our project root. Vagrant will then use this to provision
the machine.

This will instruct Vagrant to run the Puppet provisioner either when the machine
boots up or if we run the Vagrant provision command. The default Vagrant Puppet
setup will make the following assumptions, unless we override the settings:

• Manifests will be located in the manifests folder
• Modules will also be located in the manifests folder (we may want to

point these elsewhere, especially if we are using third party modules, to
keep them separate)

• The manifest file to use will be default.pp (and will obviously be within
the manifests folder; it can be useful to override this if we are using Puppet
modules and manifests within the same project for multiple environments,
we may have a manifest for our Vagrant VM, one for our production
environment and one for a user acceptance testing platform for example)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[61]

We can modify these options by provisioning configuration options as opposed
to just telling Vagrant to provision with Puppet. When creating projects which are
managed by Vagrant, I like to put all my provision related files structured within
the provision folder. In order to override these, within the Puppet configuration for
Vagrant, we can then specify options for the location of Puppet manifests (puppet.
manifests_path), the name of the Puppet manifest to apply (puppet.manifests_
file), and the location of any Puppet modules which we may reference within our
Puppet manifest (puppet.module_path). The following customizes these options:

config.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "provision/modules"
end

It is important for us to have the ability to at least change the manifest file, as
Vagrant also supports a multi VM environment, where a single project can have a
number of virtual machines (for example, a web server and a database server). With
this setup, we would need to tell Vagrant which manifest file to use for each of the
machines, so that the web server can be properly configured as a web server and the
database server as a database server.

Puppet provisioning in action
Our knowledge of creating Puppet modules and manifests from Chapter 3,
Provisioning with Puppet, we can now point our Vagrant configuration at these
files and see it in action. If we run a Vagrant file up on a project which is suitably
configured, we will see the output of Puppet applying its settings to our VM in the
terminal window, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Vagrant using Puppet and Chef

[62]

The console output highlights details of each Puppet instruction that is
run, including:

• The stage the instruction is within (this is the Puppet stage, as we discussed
in Chapter 3, Provisioning with Puppet, which allows us to group classes
together to control the ordering of certain actions)

• The module
• The resource type
• The resource name
• If the instruction was executed successfully

Using Puppet in client/server mode
As discussed earlier, we can also run Puppet within our Vagrant environment
in client/server mode, by using the Puppet agent on the virtual machine. The
configuration required for this is minimal, we simply tell Vagrant the address
of the Puppet server we are using, and the name of our node (the virtual machine
we are setting up):

config.vm.provision :puppet_server do |puppet|
 puppet.puppet_server = "puppet.internal.michaelpeacock.co.uk"
 puppet.puppet_node = "vm.internal.michaelpeacock.co.uk"
end

The node name is the reference for the machine within the Puppet server so the
Puppet server knows how our VM should be configured. The node name is also used
to generate an SSL certificate so that the VM can authenticate with the Puppet server
(more detail on this is available on the Puppet website, puppetlabs.com, and the
Puppet blog available at, puppetlabs.com/blog/deploying-puppet-in-client-
server-standalone-and-massively-scaled-environments/).

Provisioning with Chef on Vagrant
Vagrant also supports two methods of using Chef:

• Chef solo
• Chef in client/server mode with Chef client

Let's look at how to configure Vagrant with Chef using these two different methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

Using Chef solo
Chef solo is the Chef equivalent of Puppet standalone.

The simplest way to use this within our project is simply to provide a Chef run list to
Vagrant, this tells Vagrant which cookbooks should be applied. The following is an
example of telling Vagrant to use the PHP cookbook:

config.vm.provision :chef_solo do |chef|
 chef.add_recipe "php"
end

This takes the PHP cookbook from the default cookbooks folder and applies it to the
virtual machine.

As with Puppet, Vagrant makes some assumptions by default, these are:

• Cookbooks are stored in the cookbooks folder within the project root.
The chef.cookbooks_path setting allows us to override the cookbooks
folder location; we can either provide a single path or we can provide an
array of paths (wrapped in square brackets, separated with commas) if we
want Vagrant and Chef to look in a range of folders for our cookbooks. The
following code would go into our Vagrant file to tell Vagrant to override the
cookbooks folder with provision/cookbooks:
config.vm.provision :chef_solo do |chef|
 chef.cookbooks_path = "provision/cookbooks"
end

• We can also use Chef Roles by providing:
 ° The location of the roles folder
 ° The roles we wish to add to the VM

More information on Chef Roles can be found on the Opscode website
http://docs.opscode.com/essentials_roles.html.
The following code in our Vagrant file would set up our project to use
Chef Roles:

config.vm.provision :chef_solo do |chef|
 chef.roles_path = "provision/roles"
 chef.add_role("web")
end

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Vagrant using Puppet and Chef

[64]

Using Chef in a client/server mode
Like Puppet, Chef also has a client/server method for provisioning machines, by
using Chef Client on the VM. To use Chef Client we need to tell Vagrant where the
Chef Server is located (through the chef.chef_server_url setting) and provide
the authorization key which will be used to authenticate the VM with the Server
(through the chef.validation_key_path setting).

The following code in our Vagrant file will instruct Vagrant to provision from a
Chef Server:

config.vm.provision :chef_client do |chef|
 chef.chef_server_url = "http://chef.internal.michaelpeacock.
 co.uk:4000/" chef.validation_key_path = "key.pem"
end

We can also override the run list that the Chef Server provides for our VM by
manually adding roles and recipes to this configuration. If we have specified
different environments on our Chef Server, we can specify which environment
we want to use with the chef.environment configuration.

Vagrant VMs which use Chef Server will have corresponding node
and client entries on the Chef Server named with the hostname of the
VM. If we destroy the VM and recreate it, Chef will generate an error
because the client and node entries are already present on the server.
We need to remove these from the Chef Server when we destroy a
VM. This can be done by using the knife tool from chef: knife node
delete precise64 && knife client delete precise63.

Other built-in provisioners
In addition to the Puppet and Chef provisioning options within Vagrant, there are
two other methods:

• SSH: Simply invoking commands via the terminal of the VM automatically
through Vagrant

• Ansible: A tool similar in nature to Puppet and Chef, which is configured
through a series of YAML files to define how a system should be provisioned

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[65]

Provisioning with SSH – a recap
As we discussed in Chapter 2, Managing Vagrant Boxes and Projects, we can instruct
Vagrant to run a series of SSH commands on the VM. This can be used to provision
the server.

There are two ways to use SSH provisioning:

• Path: a file to execute
• Inline: providing specific commands to run

Both of these are shown as follows:

config.vm.provision :shell, :path => "provision/setup.sh"

config.vm.provision :shell, :inline => "apt-get install apache2"

Ansible playbooks
Detailed information on Ansible can be found on the project's website
(http://www.ansibleworks.com/). In order to use Ansible within a Vagrant
project, we need to tell Vagrant where the playbook and inventory files are:

config.vm.provision :ansible do |ansible|
 ansible.playbook = "provision/playbook.yml"
 ansible.inventory_file = "provision/hosts"
end

The inventory file contains a list of environment names and IP addresses; we use this
to restrict which commands Ansible runs on specific environments.

Using multiple provisioners on a
single project
We can use multiple provisioners within a single project if we wish; we simply need
to put them in the order we wish for them to be executed within our Vagrant file.
The following would first run an SSH command before provisioning with Puppet:

Vagrant.configure("2") do |config|
 Config.vm.box = "precise64"

 config.vm.provision :shell, :inline => "apt-get update"

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning with Vagrant using Puppet and Chef

[66]

 config.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.manifest_file = "default.pp"
 puppet.module_path = "provision/modules"
 end

end

Using multiple provisioners can be useful, especially if one is more suited at
specific tasks than another, or if we require some prerequisites. For example, when
using Puppet and Chef in the client/server mode, they need to have an SSH key to
communicate with the server. We could use a shell provisioner to instruct the VM
to download the keys we have prepared from a secure location before the Puppet or
Chef provisioners kick in.

Overriding provisioning via the
command line
There may be instances where we want to restrict or enforce the execution of
provisioning or even a specific provisioner within a project. The following
commands are all executed from the host machine:

• We can cancel a running provision by pressing CMD + C at the terminal
• We can instruct Vagrant to re-run provisioning on a VM by using the

vagrant provision command
• We can also add no-provision to the up and reload commands to instruct

Vagrant to not run the provisioning tools when performing the up and
reload actions

• We can also provision with just a specific provisioner should we wish, for
example, if we wanted to instruct Vagrant to just run Puppet in a standalone
mode (in a project which has multiple provisioners configured) we would
run vagrant provision provision-with puppet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

Summary
In this chapter we have learned how we can apply our knowledge of Puppet and
Chef from Chapter 3, Provisioning with Puppet, and Chapter 4, Provisioning with Chef,
and configure Vagrant to use these tools to provision our virtual machines.
This has included:

• Using Puppet in a standalone mode, which uses the Puppet apply command
to apply locally stored manifests and modules onto the machine

• Using Puppet in the client/server mode, which uses the Puppet agent to
retrieve configuration from a central server to provision the machine

• Using Chef solo which applies locally stored cookbooks and recipes
to the machine

• Using Chef in the client/server mode, which uses the Chef client to retrieve
the configuration from a central server to provision the machine

• Other provisions including SSH provisioning and the Ansible provisioner
• Running multiple provisioners within a single project
• Overriding provisioning at the command line and re-running the

provisioning tools with vagrant provision

Now, we have fully mastered how to set up, use, and manage Vagrant along with
the provisioning tools to work on a single machine project. In Chapter 6, Working
with Multiple Machines, we will look at how to use Vagrant and our knowledge of
provisioners to manage a multi-machine project, with provisioners configuring
different machines for different purposes for use within the project for example,
a web server and a database server.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Multiple
Machines

So far we have used Vagrant to build a development environment contained within
a virtual machine; one of the key aspects being that this virtual machine mimics our
production environment. It gives us the flexibility of being able to encapsulate the
development environment for different projects so that we can easily switch from
one to another without having to modify the software on our own machines.

In many cases, the features we have learned so far are enough. However, web
projects are more and more complex, with developers continually improving, having
to deal with multiple machines in their architecture to help with scalability and
stability. While it can be said that scalability and stability issues won't impact on our
development environment (as we won't have huge amounts of traffic coming to our
development environment, unless we load test it), we want to ensure the coupling
between servers within our code (such as application code connecting to a remote
database) works in our development environment before we put the project online.

Thankfully, Vagrant has support for running multiple virtual machines at the same
time within the same project. We can use this to test multi-machine architectures
and distributed systems on our own local machine before we share our changes with
colleagues in a staging environment and before the project goes live. Replicating a
multi-machine environment in development greatly helps us improve the reliability
of our projects and instills confidence in the work that we do.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Multiple Machines

[70]

In this chapter you will learn:

• How to run multiple virtual machines within a single Vagrant project
• How to provide different distinct configurations to these virtual machines

including:
 ° Names
 ° IP addresses on a private network so they can communicate

with one another
 ° Base boxes
 ° Provisioning
 ° Shared folders

• How to connect to the different virtual machines over SSH without
having to know or remember their IP addresses

Using multiple machines with Vagrant
In order to use multiple virtual machines within our project, we need to tell Vagrant
about them, and we need to provide additional configuration for the individual
virtual machines.

Defining multiple virtual machines
Within the standard Vagrant project configuration file, we can tell Vagrant that we
wish to assign a name to a virtual machine being managed by the project. Within this
subconfiguration, we provide the information Vagrant needs which are specific to
that VM.

The syntax for the subconfiguration is:

config.vm.define :name_of_the_vm do |name_of_the_vm|
 #configuration specific to the virtual machine
end

Applied to a project which requires two virtual machines, named server1 and
server2, both running the precise64 box:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "precise64"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[71]

 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "precise64"
 end

end

Connecting to multiple virtual machines
over SSH
When our multiple machines boot up in our multi-machine project, Vagrant
automatically maps different ports from our host machine to the SSH ports
on the various guest machines.

Let's look at the console output when booting a Vagrant project with two virtual
machines within it:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Multiple Machines

[72]

As shown in the preceding screenshot, Vagrant maps the SSH port on the virtual
machine designated 'webserver' to port 2222 on the host machine, and the SSH port
of the machine designated 'database' to the port 2200.

This gives us the opportunity of simply using the standard SSH command from a
terminal (or the likes of Putty on a Windows machine) to connect to localhost with
the port number that Vagrant assigns to each machine.

To connect to the machine which is mapped to port 2200 we simply run the
following command:

ssh vagrant@localhost –p2200

–p2200 tells the command to use a non-standard port, and specifies the port we
wish to use, in this case 2200. As you can see, this then lets us into the appropriate
machine, as follows:

Alternatively, we can use the vagrant ssh command to connect to the virtual
machines. The difference being that in a multi virtual machine environment, we must
also provide the name of the virtual machine. For example, vagrant ssh database.
This is the most common usage of connecting to a machine, rather than directly
connecting to the virtual machine via its IP address.

Networking multiple virtual machines
In a single virtual machine project, the IP address of the virtual machine isn't that
important. In a multi virtual machine project however, it is more likely that we want
the two machines to communicate with one another directly; in order to do that,
we need to be aware of their IP addresses. As we want to have our Vagrant projects
distributed to our team members, and some of these team members may be within
the same office, we need to:

• Predefine the IP address so that any of our projects code which needs to
communicate with the other virtual machine can do so without the other
team members needing to change configurations

• Ensure that the virtual machines are running on a private network only
attached to the machine of the user running it; this will prevent IP address
conflicts within the network

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[73]

In order to do this, we simply use the networking options which we learned about
in Chapter 2, Managing Vagrant Boxes and Projects. Because we want the virtual
machines running in a private network, it makes sense to use a range of private IP
addresses which are different to your own network. For example, my network range
is 192.168.1.xxx, so I will use the range 10.11.1.xxx for my virtual machine
network, as shown in the following code:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "precise64"
 server1.vm.network :private_network, ip: "10.11.1.100"
 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "precise64"
 server2.vm.network :private_network, ip: "10.11.1.101"
 end

end

Let's test this out and test that we can connect from one machine to the other:

1. Power up the project (vagrant up)
2. Connect to server1 (vagrant ssh server1)
3. Ping server2 from server1 (ping 10.11.1.101)

The output shows that we are able to communicate over the network from server1
to server2 as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Multiple Machines

[74]

Provisioning the machines separately
As the virtual machines in our projects are going to be used for different purposes,
we need to use different provisioning for the machines so they both have the
software and configurations needed to do their job.

We take the provisioning code, which we have learned in Chapter 3, Provisioning with
Puppet, and Chapter 4, Provisioning with Chef, and we place the relevant code within
the virtual machines subconfiguration. There are some key changes which we need
to make:

• The opening line of the provision code must reference the server name of the
virtual machine it relates to

• For Puppet, we should use a different manifest file for the two
virtual machines

• For Chef, we would apply different roles to different machines

The following code provisions both the machines by using Puppet. They both rely
on the same set of Puppet modules, the same path pointing to the manifests folder,
however they both use different manifests to set up the projects (alternatively, we
could configure the machines, identify themselves as nodes to a puppet master to
retrieve the appropriate configuration):

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define :server1 do |server1|
 server1.vm.box = "precise64"
 server1.vm.network :private_network, ip: "10.11.1.100"
 server1.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.manifest_file = "server1.pp"
 puppet.module_path = "provision/modules"
 end
 end

 config.vm.define :server2 do |server2|
 server2.vm.box = "precise64"
 server2.vm.network :private_network, ip: "10.11.1.101"
 server2.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.manifest_file = "server2.pp"
 puppet.module_path = "provision/modules"
 end
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[75]

Within the provisions for each machine, we would need to ensure that we allow
both machines to communicate with one another. For example, by default a MySQL
server won't accept connections from a remote server, so it would be needed to
modify (or replace) the configuration file with one which allows it, or we would
have to use a Puppet module or Chef cookbook which allowed us to modify this
configuration value.

You should check the documentation for any software you are
communicating with over the network to see how it needs to be
configured. With MySQL you need to edit the my.cnf file and
set the bind address to 0.0.0.0.

Destroying a multi-machine project
If we want to completely remove the virtual machines for our project from our host
machine, we can use the vagrant destroy command as with normal projects. The
difference being that Vagrant will ask us to confirm the removal of each machine
within the project, as shown in the following screenshot:

Summary
In this chapter, we set up a Vagrant project which uses multiple virtual machines.
During the course of this we learned:

• How to create multiple virtual machines within a single project
• How to assign names to the individual machines
• How to connect to the individual machines over SSH by using both the

operating systems built in the SSH command and the vagrant ssh command
• How to configure the individual virtual machines within the project,

providing IP addresses, base boxes, and provisioning options to them

Now we have learned the vast majority of Vagrants functionality and how to use it
within different project scenarios. In the next chapter, we will look at how to build
our own custom base box to use with our projects, configuring a blank operating
system installation into a compatible base image.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box
So far, we have used Vagrant with the freely available base boxes, and learned about
the websites available such as vagrantbox.es, which provide a list of unofficial
third-party base boxes. When we discussed Vagrant boxes initially, we also learned
about how we can export a Vagrant environment into a new base box.

This involves us either finding a base box or customizing an existing base box. In this
chapter, we will look at how we can take a Linux installation disk and turn it into a
working Vagrant base box, which we can further customize as much as we like.

In this chapter, you will learn:

• How to create a new VirtualBox machine, suitably configured for Vagrant
• How to install the VirtualBox Guest Additions
• How to set up the Linux installation to let Vagrant log in
• How to install Puppet
• How to install Chef
• How to clean up the box
• How to export the VM into a base box

Getting started
While working with an older version of Vagrant, the documentation at
http://docs-v1.vagrantup.com/v1/docs/base_boxes.html may be a
 useful reference to accompany this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box

[78]

In order for us to create a new base box, we need to download a copy of the
operating system we want to use (we will use 64-bit Ubuntu Server Version 13.04
from http://www.ubuntu.com/download/server). We then need to use VirtualBox
to create a virtual machine, powered by the operating system we have downloaded.
Next, we need to configure the virtual machine for Vagrant. Finally, we need to
export the virtual machine into a Vagrant base box.

You can also use other distributions of Linux, or even Windows if
you wish. Specifics will vary with the operating system used, so you
will need to consult the relevant documentation.

Preparing the VirtualBox machine
In order to create the virtual machine with VirtualBox, we need to open up the
VirtualBox and perform the given steps:

1. Click on the New button, at the upper-left corner of the VirtualBox, to start
the process:

2. Let's name the machine as vagrant-ubuntu-raring, this is the format
recommended by Vagrant. Select Linux in the Type drop-down, and
Version as Ubuntu (64 bit):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[79]

3. Vagrant recommends setting a memory allocation of 360 MB. This is
typically sufficient for a base install, and users can override this within
their Vagrantfile if they need more resources:

4. We need our virtual machine to have some storage allocation, so let's select
Create a virtual hard drive now:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box

[80]

5. We want to select VMDK (Virtual Machine Disk) as the disk type:

6. We want to create a drive, which is Dynamically allocated:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[81]

7. Let's give the drive a maximum limit of 40.00 GB; the Vagrant
documentation suggests that this is typically sufficient for many projects:

8. Clicking on Create will then save the virtual machine within VirtualBox. We
need to make some additional configuration changes which were not a part
of the creation wizard, so let's click on the VM from the left-hand side of the
screen and then click on the Settings button:

9. The first additional change is Audio; let's turn this off:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box

[82]

10. We need to ensure that the network adapter configured within VirtualBox is
enabled and uses NAT. Without this, Vagrant won't work:

11. Finally, let's turn off USB support, as this is generally not required:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[83]

12. Now we need to switch on the virtual machine. When it powers on, it asks
us to select a startup disk, which contains the operating system we wish to
install. Clicking on the folder icon on this screen lets us select a custom file,
in our case, this will be our ubuntu-13.04-server-amd64.iso file.

The virtual machine will then boot from the CD and take us to the installation
process. We should follow this process to set up the machine.

There are some specific values for some things which Vagrant expects, so wherever
appropriate, we should ensure we set them as such:

• By convention, the operating system's hostname should be of the format
vagrant-operating-system-name, for example, vagrant-ubuntu-raring

• Domain: vagrantup.com
• Root password: vagrant
• Main account username: vagrant
• Main account password: vagrant

In most other cases, the default options will be fine, as we will configure other
aspects later. When prompted as to any packages to install by default, we should
select to install openssh-server.

VirtualBox Guest Additions
First, let's log in to our new virtual machine within VirtualBox. Once logged in, at
the terminal, we should run apt-get update to update our package manager.

Vagrant has a set of tools called Guest Additions, which provide some key
integration points between the virtual machine and VirtualBox; this includes
support for shared folders and networking integration.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box

[84]

To install these tools, once the VM is running, we should click on the Devices menu
within VirtualBox and click on Install Guest Additions...:

This simply boots a virtual CD within the virtual machine; we still need to actually
install the Guest Additions. The first step of that is to install a prerequisite, which
are the Linux headers:

sudo apt-get install linux-headers-$(uname -r) build-essential

Next, we want to mount the virtual CD which VirtualBox has loaded up into a
folder within the VM:

sudo mount /dev/cdrom /media/cdrom

Finally, we want to run the installation command:

sudo sh /media/cdrom/VBoxLinuxAdditions.run

Vagrant authentication
Vagrant communicates with base boxes over SSH. Vagrant itself has a private key,
for which we need to install the corresponding public key into the virtual machine.
Vagrant expects a specific user with a predefined password to also be within
the machine, and the user needs to be configured so that it isn't prompted for
the password when attempting to perform actions which require elevated
privileges (sudo).

Vagrant user and admin group
Provided we created the Vagrant user during the installation process (as per the
main account user and password mentioned earlier), and then we need to create
an admin group and add the Vagrant user to this group.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[85]

Firstly, to create the group:

Sudo groupadd admin

To add the Vagrant user to this group:

Sudo usermod -a -G admin vagrant

Sudoers file
In order to stop the virtual machine asking for the user's password when running
elevated actions, we need to modify the sudoers file (this is a file which tells the
operating system which users can perform elevated actions and the settings around
them. More information can be found at https://help.ubuntu.com/community/
Sudoers). We need to add to this file a configuration line, which tells the operating
system not to prompt for the password. Because the file is very important, and an
incorrect configuration would break the operating system, there is a program built
into Ubuntu, which won't save if the file is not edited correctly.

First, let's run this program:

visudo

At the bottom of the file, let's add this line to prevent the operating system
prompting for the password:

%admin ALL=(ALL) NOPASSWD: ALL

Another requirement of Vagrant is that we add the following line near the top
of this file:

Defaults env_keep="SSH_AUTH_SOCK"

We also need to disable requiretty in the sudoers file by commenting out the
appropriate line as:

#Default requiretty

Insecure public/private key pair
The insecure public and private key pair is publicly available at
https://github.com/mitchellh/vagrant/tree/master/keys/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own Box

[86]

We need to copy the contents of the public key and paste it into the authorized_
hosts file. Provided we are logged in as the Vagrant user, we can run the following
command to let us edit this file:

nano ~/.ssh/authorized_hosts

Alternatively, we can download the file contents and put it straight into the
authorized_hosts file:

wget
 https://raw.github.com/mitchellh/vagrant/master/keys/
 vagrant.pub –o ~/.ssh/authorized_hosts

The .ssh directory needs to have permissions of 0700, and the
authorized_hosts file needs to have permissions of 0644
(chmod 0644 ~/.ssh/authorized_keys).

Provisioners
Because Vagrant provides support for provisioners, we need to install these into the
virtual machine so that Vagrant can tell them to provision our environments.

Puppet
Puppet is installed using the built-in package manager:

sudo apt-get install puppet

The version of Puppet in the various operating system repositories
may be slightly dated. Puppet can also be installed manually or via the
repository site provided by Puppet labs. More information is available
on the Puppet labs website at http://docs.puppetlabs.com/
guides/installation.html

Chef
As per the Chef documentation at http://wiki.opscode.com/display/chef/
Installing+Chef+Client+on+Ubuntu+or+Debian, it is recommended that we
manually install RubyGems and then use this to install Chef. RubyGems has some
dependencies, so let's install them first:

sudo apt-get install ruby ruby-dev libopenssl-ruby rdoc ri irb

 build-essential wget ssl-cert curl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[87]

Next, let's install RubyGems:

cd /tmp

curl -O http://production.cf.rubygems.org/rubygems/

 rubygems-1.8.10.tgz

tar zxf rubygems-1.8.10.tgz

cd rubygems-1.8.10

sudo ruby setup.rb --no-format-executable

Now, let's install Chef:

sudo gem install chef --no-ri --no-rdoc

Cleanup
Before we package up the virtual machine into a Vagrant base box, let's cleanup
some of the files we used. We made use of the tmp folder, so let's empty that. We
should also clean up our package manager's cache, as this uses additional space
when the base box is packaged:

rm –rf /tmp/*

sudo apt-get clean

Export
Finally, we use Vagrant's package subcommand to package up the box:

vagrant package --base vagrant-ubuntu-raring

Full details of the package subcommand are available on the Vagrant website:
http://docs.vagrantup.com/v2/cli/package.html

Summary
In this chapter, we learned how to create from scratch, a base box for our Vagrant
projects. This can be used to create base boxes from operating systems, which don't
necessarily have boxes available to download.

Now, we know how to create, manage, distribute, and even build development
environments from scratch for our projects!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack
Now that we have a good knowledge of Vagrant, how to use it to manage projects, and
how to use the Puppet provisioning tool, let's look at how to use these tools to build a
LAMP (Linux, Apache, MySQL, and PHP) development environment with Vagrant.

In this chapter you will learn:

• How to update our package manager
• How to create a LAMP-based development environment in Vagrant,

including:

 ° How to install Apache
 ° How to have Apache reload when we install PHP
 ° How to install and enable Apache's rewrite module
 ° How to customize the Apache configuration file
 ° How to install PHP
 ° How to install MySQL
 ° How to install e-mail sending services

Creating the Vagrant project
First, we want to create a new project, so let's create a new folder called
lamp_stack and initialize a new precise64 Vagrant project within it by
executing the following commands:

mkdir lamp_stack
cd lamp_stack
vagrant init precise64

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack

[90]

You will need to have the Ubuntu precise64 box installed
for the previous command to work. For more information, see
Chapter 2, Managing Vagrant Boxes and Projects.

We want to forward port 80 from our guest machine to port 8080 on our host
machine to make it easier to access the web project we have within the virtual
machine. In order to achieve this, let's add the following line to our Vagrant file.
Some versions of Vagrant will automatically include this line but commented it out,
so we may just need to remove the comment (# character from the start of the line):

config.vm.network :forwarded_port, guest: 80, host: 8080

Before we run our Puppet provisioner to install our LAMP stack, we should instruct
Vagrant to run the apt-get update command on the virtual machine. Without this,
it isn't always possible to install new packages:

config.vm.provision :shell, :inline => "apt-get update"

As we will be putting our Puppet modules and manifests in a provision folder, we
need to configure Vagrant to use the correct folders for our Puppet manifests and
modules as well as the default manifest file. Adding the following to our Vagrant file
will do this for us:

config.vm.provision :puppet do |puppet|
 puppet.manifests_path = "provision/manifests"
 puppet.module_path = "provision/modules"
 puppet.manifest_file = "default.pp"
end

Creating the Puppet manifests
Let's start by creating some folders for our Puppet modules and manifests by
executing the following commands:

mkdir provision
cd provision
mkdir modules
mkdir manifests

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[91]

For each of the modules we want to create, we need to create a folder within the
provision/modules folder for the module. Within this folder, we need to create a
manifests folder, and within this our Puppet manifest file, init.pp. Structurally,
this looks something, as follows:

|-- provision
| |-- manifests
| | -- init.pp
| -- modules
 -- Vagrantfile

Installing Apache
Let's look at what is involved in installing Apache (this would be in the file,
provision/modules/apache/init.pp). First, we need to ensure the Apache2
package is installed:

class apache {

 package {"apache2":
 ensure => present
 }

Note that we have not closed the curly bracket for the apache
class. That is because this is just the first snippet of the file; we
will close it at the end.

Next, we should, within the default Apache web root (/var/www), create a symlink
which points a src folder to our projects src folder (this is within the shared folder
that Vagrant automatically creates). This needs to be done once Apache is installed
(to ensure the /var/www folder is present), as follows:

 file { '/var/www/src':
 ensure => 'link',
 target => '/vagrant/src',
 require => Package['apache2']
 }

Because we want to change our default Apache configuration file, we should update
the contents of the Apache configuration file with one of our own (this will need to
be placed in the provision/modules/apache/files folder in a file called default).

 file { '/etc/apache2/sites-available/default':
 source => 'puppet:///modules/apache/default',
 owner => 'root',

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack

[92]

 group => 'root',
 require => Package['apache2']
 }

Because we want to reload Apache once some of the PHP packages have been
installed, we can tell the Apache service to subscribe to these packages. Once they are
installed, Apache will restart. The following code will subscribe the Apache service
to these other packages and trigger the restart when they are installed:

 service { "apache2":
 require => Package["apache2"],
 subscribe => [File['/etc/apache2/sites-available/default'],
 Package['php5', 'php5-mysql', 'php5-dev', 'php5-curl',
 'php5-gd', 'php5-imagick', 'php5-mcrypt', 'php5-memcache',
 'php5-mhash', 'php5-pspell', 'php5-snmp', 'php5-xmlrpc',
 'php5-xsl', 'php-pear', 'libapache2-mod-php5']]
 }

We might also want to support file uploads within our project, so let's create an
uploads folder which is owned by the Apache user (www-data) and can be written to
(chmod: 0777):

 file{ "/var/www/uploads":
 ensure => "directory",
 owner => "www-data",
 group => "www-data",
 mode => 777,
 require => Package['apache2']
 }

}

Two changes we need to make to the Apache configuration are as follows:

• Create an alias folder which points to our uploads folder (we need to create
an alias, because this folder is outside of the web project files)

• Set the document root to the symlink we created earlier

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[93]

This is the file we need to call default and save within the provision/
modules/apache2/files folder:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost

 Alias /uploads /var/www/uploads

 DocumentRoot /var/www/src
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>

 ErrorLog /var/log/apache2/error.log

 # Possible values include: debug, info, notice, warn, error,
crit,
 # alert, emerg.
 LogLevel warn

 CustomLog /var/log/apache2/access.log combined

 Alias /doc/ "/usr/share/doc/"
 <Directory "/usr/share/doc/">
 Options Indexes MultiViews FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all
 Allow from 127.0.0.0/255.0.0.0 ::1/128
 </Directory>

</VirtualHost>

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack

[94]

Enable an Apache rewrite module
The Puppet module we need to create to enable the rewrite module is fairly basic; we
simply need to run a command, which installs the module. The code requires that we
already have Apache installed:

class modrewrite{

 exec { 'enabledmodrewrite':
 command => '/usr/sbin/a2enmod rewrite',
 require => Package['apache2']
 }

}

Notice that here we close the apache class. Also, the mod rewrite
command is specific to our operating system; it may vary if you are
using a different distribution.

Installing MySQL
Installing MySQL is also fairly straightforward, we just want to install a few related
packages. The following code should be placed in the file provision/modules/
mysql/init.pp:

class mysql {

 package { "mysql-server":
 ensure => present
 }

 package { "mysql-client":
 ensure => present
 }

 package { "libmysqlclient15-dev":
 ensure => present
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[95]

Installing PHP
To install PHP we need to install a range of related packages including the Apache
PHP module. This would be in the file provision/modules/php/init.pp:

class php {

 package { "php5":
 ensure => present
 }

 package { "php5-mysql":
 ensure => present
 }

 package { "php5-dev":
 ensure => present
 }

 package { "php5-curl":
 ensure => present
 }

 package { "php5-gd":
 ensure => present
 }

 package { "php5-imagick":
 ensure => present
 }

 package { "php5-mcrypt":
 ensure => present
 }

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack

[96]

 package { "php5-memcache":
 ensure => present
 }

 package { "php5-mhash":
 ensure => present
 }
 package { "php5-pspell":
 ensure => present
 }

 package { "php5-snmp":
 ensure => present
 }

 package { "php5-xmlrpc":
 ensure => present
 }

 package { "php5-xsl":
 ensure => present
 }

 package { "php5-cli":
 ensure => present
 }

 package { "php-pear":
 ensure => present
 }

 package { "libapache2-mod-php5":
 ensure => present,
 require => [Package[php5], Package[apache2]]
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[97]

Installing e-mail
Because some of our projects might involve sending e-mails, we should install e-mail
sending services on our virtual machine, and we should set these to automatically
run when the server boots up, as follows:

class mail {

 package { "postfix":
 ensure => present
 }

 package { "mailutils":
 ensure => present
 }

 exec { 'autostartmail':
 command => '/usr/sbin/update-rc.d postfix defaults',
 require => Package['postfix']
 }

}

Default manifest
Finally, we need to pull these modules together and install them when our machine
is provisioned. To do this, we simply add the following to our default.pp manifest
file in the provision/manifests folder, as follows:

import "apache"
include apache
import "modrewrite"
include modrewrite
import "php"
include php
import "mysql"
include mysql
import "mail"
include mail

www.it-ebooks.info

http://www.it-ebooks.info/

A Sample LAMP Stack

[98]

Launch the VM
In order to launch our new virtual machine, we simply need to run the
following command:

Vagrant up

As per Chapter 5, Provisioning with Vagrant using Puppet and Chef, we should now
see our VM boot, and that the various Puppet phases execute. If all goes well, we
should see no errors in this process.

Summary
In this chapter, we learned about the steps involved in creating a brand new Vagrant
project, configuring it to integrate with our host machine, and set up the standard
LAMP stack using the Puppet provisioning tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
add subcommand 21
admin group

about 84
creating 85
Vagrant user, adding to 85

Ansible
about 64
URL 65
using 65

Apache
about 6, 89
configuration 92
installing 91, 92

Apache class 34 37
Apache installation, in Chef

about 49
Apache package, installing 50
Apache service, executing 51
package manager, updating 50

Apache installation, in Puppet
about 37
Apache package, installing 38
Apache service, executing 39
package manager, updating 38

Apache rewrite module
enabling 94

Apache service
executing 39

apply command 60
apply subcommand 45
apt-get update command 38, 50
authorized_hosts file 86
auto-running commands 28, 29

B
base box

creating 78
exporting 87
importing 16-18
used, for creating Vagrant project 16-18

C
cache

clean up 87
Chef

about 6-8, 47, 48
Apache, installing 49
Chef solo 63
client/server mode 64
cookbooks, creating with 48
cron, managing 54
cron resource 49
execute resource 49
file management 51
file resource 49
group resource 49
groups, creating 55
groups management 55
installing 86
provisioning 62
recepies, creating with 48
resources 49
sudoers file, updating 56
template resource 49
user resource 49
users, creating 55, 56
users management 55
using, with Vagrant 57

www.it-ebooks.info

http://www.it-ebooks.info/

[100]

Chef Client 64
Chef cookbooks

using 56
Chef recipes 48
Chef Roles

about 63
reference link 63

Chef Server 64
Chef solo

about 48, 63
using 63

chef-solo command 57
classes, Puppet 33, 34
cleanup 87
client/server mode, Chef 64
client/server mode, Puppet 62
command line

execution 66
commands, Chef

running 54, 55
commands, Puppet

running 42, 43
composer.lock file 55
configuration, Apache 92
cookbook

about 48
creating, with Chef 48

creates parameter 42, 54
cron, Chef

managing 54
cron management, Puppet 42
cron resource, Chef 49
cron resource, Puppet 35
cron resource type, Puppet 42

D
default manifest 97
default Puppet manifest 34, 35
destroy subcommand 26

E
e-mail

installing 97
exec command 36, 37, 42-44, 54-56
exec resource, Puppet 35

Exec resource type, Puppet 42
execute resource, Chef 49

F
file management, Chef

about 51
file, copying 51, 52
folders, creating 53
multiple folders, creating 53
symlink, creating 52

file management, Puppet
about 39
file, copying 39
folders, creating 41
multiple folders, creating 41
symlink, creating 40

file resource, Chef 49
file resource, Puppet 35
functionalities, Vagran 23, 24

G
Git 6
group resource, Chef 49
group resource , Puppet 35
groups, Chef

creating 55
groups, Puppet

creating 43
Guest Additions, VirtualBox

about 83, 84
installing 84

guest machine
controlling 23
integrating, with host machine 27

H
host machine

integrating, with guest machine 27

I
init subcommand 16
insecure private key pair 86
insecure public key pair 85, 86
installation, Apache 91, 92

www.it-ebooks.info

http://www.it-ebooks.info/

[101]

installation, e-mail 97
installation, MySQL 94
installation, PHP 95
installation, Puppet 86
installation, Ruby gems 87
installation, Vagrant 13, 14
installation, VirtualBox 8-12
installation, Chef 87
inventory file 65

L
LAMP 89
LAMP server project 38
Linux 8, 89
list subcommand 22

M
Mac OS X 8
MAMP 7
manifests folder 60
manifests, Puppet 33
modules, Puppet

about 33
classes 33

multi-machine project
destroying 75

multiple provisioners
using 65

multiple virtual machines
connecting to, SSH used 71, 72
defining 70
networking 72, 73
provisioning 74
using, with Vagrant 70

MySQL
about 89
installing 94

N
Network File System 28
networking 28
Nginx 6

O
Opscode

URL, for resource types 49
Oracle VirtualBox 8

P
package resource, Chef 49
package resource, Puppet 35
package subcommand

about 87
reference link 87

parameters 36
PHP

about 89
installing 95

playbook 65
port forwarding 27
prerequisites, Vagrant installation 8
Providers 6
provision command 60
provisioners 86
provisioning

about 31, 32
overriding 66
overriding, via command line 66
within Vagrant 59

provisioning options, Vagrant 28
Puppet

about 6-8, 31-33
Apache, installing 37
client/server mode 62
commands, runnning 42, 43
cron management 42
file management 39
groups, creating 43
groups management 43
installing 86
manifests 33
modules 33
provisioning 60-62
refreshonly parameter 45
resource execution ordering 37
resource requisites 36
resources 35

www.it-ebooks.info

http://www.it-ebooks.info/

[102]

standalone mode 60, 61
subscribe parameter 44
sudoers file, updating 44
URL 36
users, creating 43
users management 43
using, with Vagrant 45

Puppet Forge
about 32, 45
URL 45

Puppet labs
URL, for info 86

Puppet manifests
about 32
creating 90, 91

Puppet modules 45
PuTTY 26

R
recepies

creating, with Chef 48
refreshonly parameter, Puppet 44
remove subcommand 22
repackage subcommand 23
resource execution ordering, Puppet 37
resource requisites, Puppet 36
resources, Chef

about 49
common functionality 56

resources, Puppet 35
resource types, Chef 49
resource types, Puppet

cron 35
exec 35
file 35
group 35
package 35
service 35
user 35

rewrite module, Apache
about 94
enabling 94

Ruby 8
Ruby Domain Specific Language 6, 32
Ruby files 48

Ruby gems
installing 87

S
service resource, Chef 49
service resource, Puppet 35
specific values

setting up 83
SSH

about 64
provisioning 65

SSH ports
multiple virtual machines, connecting over

71, 72
SSH provisioning 28
standalone mode, Puppet 60, 61
subscribe parameter, Puppet 44
Subversion 6
sudoers file

about 56, 85
updating 44, 56
URL, for info 85

supervisord module 34
symlink

creating 40, 52
Synced folders 27, 28

T
template resource, Chef 49

U
Ubuntu Lucid 23
Ubuntu Precise 23
Ubuntu Server Version 13.04

URL 78
up subcommand 26
user resource, Chef 49, 55
user resource, Puppet 35, 43
users, Chef

creating 55, 56
users, Puppet

creating 43
users resource type, Puppet 43

www.it-ebooks.info

http://www.it-ebooks.info/

[103]

V
Vagrant

about 6
Ansible, using 65
benefits 7
Chef, provisioning 62
Chef, used with 57
connecting, to multiple virtual machines

over SSH 71, 72
connecting, to virtual machine over SSH 26
features 31
functionalities 24
installing 13, 14
multiple virtual machines, using with 70
provisioners 86
provisioning options 28
Puppet, provisioning with 60
Puppet, using with 45
SSH provisioning 28
URL 6
URL, for documentation 77
URL, for downloading installer 13

Vagrant authentication
about 84
admin group 84
insecure private key pair 86
insecure public key pair 85
sudoers file 85
Vagrant user 84

Vagrant boxes
adding 21
listing 22
managing 20
removing 22
repackaging 23
searching 23

Vagrant file 6, 16, 23, 64
vagrant halt command 25
vagrant init command 19

used, for creating Vagrant project 19
Vagrant installation

prerequisites 8

Vagrant project
creating 15, 89, 90
creating, base box used 16-18
creating, vagrant init command used 19
creating, without importing base box 19

Vagrant project, creating
base box, importing 16-18

vagrant resume command 25
vagrant ssh command 26, 72
vagrant ssh database 72
vagrant suspend command 25
vagrant up command 23
Vagrant user

about 84
adding, to admin group 85
creating 84

Version Control System 6, 26
VirtualBox

about 6-8
creating 78-83
installing 8-12
URL, for downloading installer 8

virtualization 31
virtualized environment 5
virtual machine (VM)

halting 25
launching 98
powering up 23
resuming 25
suspending 25
Vagrant, connecting 26

VMDK (Virtual Machine Disk) 80
VMware Fusion 8

W
WAMP 7
Windows 8
Workstation 8

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Creating Development Environments

with Vagrant

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Cloud Computing
Cookbook, Second Edition: RAW
ISBN: 978-1-78216-758-7 Paperback: 310 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Quantum, and Cinder

1. Updated for OpenStack Grizzly

2. Learn how to install, configure, and manage all
of the OpenStack core projects including new
topics like block storage and software defined
networking

3. Learn how to build your Private Cloud utilizing
DevOps and Continuous Integration tools and
techniques

Citrix XenApp Performance
Essentials
ISBN: 978-1-78217-044-0 Paperback: 98 pages

A practical guide for tuning and optimizing the
performance of XenApp farms using real world
examples

1. Design a scalable XenApp infrastructure

2. Monitor and optimize server performance

3. Improve end user experience

4. Tune the farm for WAN connections

5. Real world examples, ready-to-use suggestions,
and best practices

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

vSphere High Performance
Cookbook
ISBN: 978-1-78217-000-6 Paperback: 240 pages

Over 60 recipes to help you improve vSphere
performance and solve problems before they arise

1. Troubleshoot real-world vSphere performance
issues and identify their root causes

2. Design and configure CPU, memory,
networking, and storage for better and more
reliable performance

3. Comprehensive coverage of performance issues
and solutions including vCenter Server design
and virtual machine and application tuning

Microsoft System Center Virtual
Machine Manager 2012 Cookbook
ISBN: 978-1-84968-632-7 Paperback: 342 pages

Over 60 recipes for the administration and
management of Microsoft System Center Virtual
Machine Manager 2012 SP1

1. Create, deploy, and manage Datacentres,
Private and Hybrid Clouds with hybrid
hypervisors by using VMM 2012 SP1, App
Controller, and Operations Manager.

2. Integrate and manage fabric (compute, storages,
gateways, networking) services and resources.
Deploy Clusters from bare metal servers.

3. Learn how to use VMM 2012 SP1 features
such as Windows 2012 and SQL 2012 support,
Network Virtualization, Live Migration, Linux
VMs, Resource Throttling, and Availability.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Vagrant
	Requirements for Vagrant
	Getting installed
	Installing VirtualBox
	Installing Vagrant

	Summary

	Chapter 2: Managing Vagrant Boxes
and Projects
	Creating Vagrant projects
	Importing and using base boxes
	Creating projects without importing a base box

	Managing Vagrant boxes
	Adding Vagrant boxes
	Listing Vagrant boxes
	Removing Vagrant boxes
	Repackaging a Vagrant box
	Finding Vagrant boxes

	Controlling guest machines
	Powering up the virtual machine
	Suspending the virtual machine
	Resuming the virtual machine
	Shutting down the virtual machine
	Starting from scratch
	Connecting to the virtual machine over SSH

	Integration between the host and
the guest
	Port forwarding
	Synced folders
	Networking

	Auto-running commands
	Summary

	Chapter 3: Provisioning with Puppet
	Provisioning
	About Puppet
	Creating modules and manifests with Puppet
	Puppet classes
	Default Puppet manifests
	Resources
	Resource execution ordering

	Installing software
	Update our package manager
	Install the Apache package
	Run the Apache service

	File management
	Copy a file
	Create a symlink
	Create folders
	Create multiple folders in one go

	cron management
	Running commands
	Manage users and groups
	Creating groups
	Creating users
	Updating the sudoers file

	Subscribe and refresh only
	Puppet modules
	Using Puppet to provision servers

	Summary

	Chapter 4: Provisioning with Chef
	Knowing about Chef
	Creating cookbooks and recipes with Chef
	Resources – what Chef can do
	Installing software
	Updating our package manager
	Installing the Apache package
	Running the Apache service

	Understanding file management
	Copying a file
	Creating a symlink
	Creating folders
	Creating multiple folders in a single process with looping

	Managing cron
	Running commands
	Managing users and groups
	Creating groups
	Creating users
	Updating the sudoers file

	Knowing common resource functionalities
	Using Chef cookbooks
	Using Chef to provision servers

	Summary

	Chapter 5: Provisioning with Vagrant using Puppet and Chef
	Provisioning within Vagrant
	Provisioning with Puppet on Vagrant
	Using Puppet in a standalone mode
	Puppet provisioning in action

	Using Puppet in client/server mode

	Provisioning with Chef on Vagrant
	Using Chef solo
	Using Chef in a client/server mode

	Other builtin provisioners
	Provisioning with SSH – a recap
	Ansible playbooks

	Using multiple provisioners on a
single project
	Overriding provisioning via the
command line
	Summary

	Chapter 6: Working with Multiple Machines
	Using multiple machines with Vagrant
	Defining multiple virtual machines

	Connecting to the multiple virtual machines over SSH
	Networking the multiple virtual machines
	Provisioning the machines separately

	Destroying a multi-machine project
	Summary

	Chapter 7: Creating Your Own Box
	Getting started
	Preparing the VirtualBox machine
	VirtualBox Guest Additions
	Vagrant authentication
	Vagrant user and admin group
	Sudoers file
	Insecure public/private key pair

	Provisioners
	Puppet
	Chef

	Cleanup
	Export
	Summary

	Appendix: A Sample LAMP Stack
	Index

