
 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 9

Configuring Your Linux System with the
CFEngine Design Center
D i e g o Z a m b o n i

CFEngine is an efficient, lightweight, and powerful configuration
management tool for computer systems of all kinds. The most recent
version, CFEngine 3.5.2, was released in August 2013. With CFEn-

gine, you can express the desired state of your systems in two main ways:
by writing policy in the CFEngine policy language directly, or by using the
CFEngine Design Center [1], a repository of ready-to-use components called
sketches, which allow you to perform entirely data-driven configuration.
There are sketches for all sorts of tasks, from basic system configuration
to complex cloud deployments. In this article, I will use simple examples to
show you how to perform basic configuration tasks using the Design Center.

Getting Ready
First, you must install CFEngine and the Design Center on your system. Two versions of
CFEngine are available: the open-source version (CFEngine Community) and the com-
mercial version (CFEngine Enterprise). In my examples, I will use the Community version,
which is available as packages for most Linux distributions and can also be downloaded
and compiled from source code [2].

The easiest way to set up a test environment is to use Vagrant [3]. If you have Vagrant
installed, fetch the sample Vagrantfile [4], put it in a directory, run vagrant up, and you
will have a freshly installed Ubuntu 12.04 VM with both CFEngine and the Design Center
ready to use. Then you can skip the rest of this section. If you prefer to do this on your own
machine, or you don’t want to use Vagrant, follow the instructions below.

I will use a fresh Ubuntu 12.04/64bit install, and follow the instructions from https://cfen-
gine.com/cfengine-linux-distros to install CFEngine (command output edited for brevity):

wget -q http://cfengine.com/pub/gpg.key

apt-key add gpg.key

rm gpg.key

echo “deb http://cfengine.com/pub/apt $(lsb_release -cs) main” > \

> /etc/apt/sources.list.d/cfengine-community.list

apt-get -qq update

apt-get -qq install cfengine-community

Selecting previously unselected package cfengine-community.

...

Now CFEngine is installed but not running. For this, we need to bootstrap CFEngine to a
policy server. We will set up our machine as its own policy server, so we need to bootstrap
to its own IP address:

Diego Zamboni is a computer
scientist, consultant, author,
programmer, sysadmin, and
overall geek who works as
a senior security advisor at

CFEngine. He has more than 20 years of
experience in system administration and
security, and has worked in both the applied
and theoretical sides of the computer
science field. He holds a Ph.D. from Purdue
University, and has worked as a sysadmin
at a supercomputer center, as a researcher
at the IBM Zurich Research Lab, and as a
consultant at HP Enterprise Services. Zamboni
is the author of the book “Learning CFEngine
3”, published by O’Reilly Media. He lives in
Queretaro, Mexico with his wife and two
daughters. diego.zamboni@cfengine.com

https://www.usenix.org
diego.zamboni@cfengine.com

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 10

Configuring Your Linux System with the CFEngine Design Center

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 08:00:27:fe:aa:af

 inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0

...

/var/cfengine/bin/cf-agent --bootstrap 10.0.2.15

2013-08-19T22:25:53+0000 notice: Q: “...f-serverd””: 2013-08-

19T22:25:53+0000 notice: Server is starting...

2013-08-19T22:25:53+0000 notice: R: This host assumes the

role of policy server

2013-08-19T22:25:53+0000 notice: R: Updated local policy from

policy server

2013-08-19T22:25:53+0000 notice: R: Started the server

2013-08-19T22:25:53+0000 notice: R: Started the scheduler

2013-08-19T22:25:53+0000 notice: Bootstrap to ‘10.0.2.15’

completed successfully!

Now CFEngine is running, which you can verify by looking at
the running processes:

ps ax | grep cf-

 1869 ? Ss 0:00 /var/cfengine/bin/cf-execd

 1875 ? Ss 0:00 /var/cfengine/bin/cf-serverd

 1889 ? Ss 0:00 /var/cfengine/bin/cf-monitord

From now on, the CFEngine command cf-agent will run every
five minutes to execute its policies. In this article, I will not go
into more detail about how CFEngine works, but rather show
you how you can use the CFEngine Design Center to config-
ure your system without having to write CFEngine policies.
The Design Center is hosted on GitHub [5], and its repository
includes both the sketches and the tools used to manage them.
We will clone the repository using git:

apt-get -qq install git libterm-readline-gnu-perl

cd /var/cfengine/

git clone https://github.com/cfengine/design-center

Cloning into ‘design-center’...

...

Using the CFEngine Design Center
Now we are ready to start using the Design Center. From the
command line, the cf-sketch tool is the main way to manage
Design Center sketches on your systems. CFEngine Enterprise
includes a GUI for the Design Center, but for now we will stick
to the command-line tools.

First, we need to run cf-sketch, which will put us in an interac-
tive prompt:

cd /var/cfengine/design-center/tools/cf-sketch/

./cf-sketch.pl

Welcome to cf-sketch version 3.5.0b1.

CFEngine AS, 2013.

Enter any command to cf-sketch, use ‘help’ for help, or ‘quit’ or

‘^D’ to quit.

cf-sketch> _

You can type help at this prompt to see all the commands avail-
able. In particular, you can type search to produce a listing of
all the sketches available in the repository. For now, we will
dive straight into the configuration of our system.

Let’s look at some of the system configuration sketches avail-
able in the Design Center:

cf-sketch> search system

The following sketches match your query:

System::Logrotate Manage log rotation settings

System::Routes Manage system routes

System::Sudoers Sets defaults and user permissions in the

sudoers fileSystem::Syslog Configures syslog

System::access Manage access.conf values

System::config_resolver Configure DNS resolver

System::cron Manage crontab and /etc/cron.d contents

System::etc_hosts Manage /etc/hosts

System::motd Configure the Message of the Day

System::set_hostname Set system hostname. Domain name is also

set on Mac, Red Hat and and Gentoo derived distributions (but

not Debian).

System::sysctl Manage sysctl values

System::tzconfig Manage system timezone configuration

First we will configure the system timezone. For this, we will
use the System::tzconfig sketch. We can use the info command
to get detailed information about the sketch, including the
parameters it uses:

cf-sketch> info -v System::tzconfig

The following sketches match your query:

Sketch System::tzconfig

Description: Manage system timezone configuration

Authors: Nick Anderson <nick@cmdln.org>, Ted Zlatanov <tzz@

lifelogs.com>

Version: 1.2

License: MIT

Tags: cfdc

Installed: No

Parameters:

 For bundle set

 timezone: string

 zoneinfo: string

Return values:

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 11

Configuring Your Linux System with the CFEngine Design Center

 Bundle set: [timezone]

The first step is to install it:

cf-sketch> install System::tzconfig

Sketch System::tzconfig installed under /var/cfengine/

masterfiles/sketches.

We can verify that the sketch has been installed using the list
command. Note that a couple of library sketches were automat-
ically installed as dependencies of System::tzconfig:

cf-sketch> list

The following sketches are installed:

CFEngine::dclib Design Center standard library

CFEngine::stdlib The portions of the CFEngine standard library

(also known as COPBL) that are compatible with 3.4.0 releases

System::tzconfig Manage system timezone configuration

Next, we need to define a parameter set for our sketch, which
contains the values of the parameters needed by the sketch
(enter your own timezone instead of the one shown here):

cf-sketch> define params System::tzconfig

Please enter a name for the new parameter set (default:

System::tzconfig-set-000): tzconfig1

Querying configuration for parameter set ‘tzconfig1’ for bundle

‘set’.

Please enter parameter timezone.

 (enter STOP to cancel)

timezone : Mexico/General

Please enter parameter zoneinfo.

 (enter STOP to cancel)

zoneinfo : /usr/share/zoneinfo

Defining parameter set ‘tzconfig1’ with the entered data.

Parameter set tzconfig1 successfully defined.

Now we need to define an environment, which is short for “set
of conditions under which a sketch will be executed with cer-
tain parameters”. The conditions are expressed as CFEngine
class expressions, so they can represent arbitrary conditions
on the system, either automatically detected by CFEngine or
set by your own CFEngine policies. For our example, we will
activate our sketches in all Linux machines, so we will use the
linux class, which is automatically set by CFEngine when it
runs on a Linux host:

cf-sketch> define env

Please enter a name for the new environment: env_linux

I will now prompt you for the conditions for activation, test,

and verbose mode

that will be associated with environment ‘env_linux’. Please

enter them as

CFEngine class expressions.

Please enter the activation condition: linux

Please enter the test condition: !any

Please enter the verbose condition: !any

Environment ‘env_linux’ successfully defined.

Now all we need to do is activate our sketch, telling it that we
want to run it with the parameter set we defined, on all Linux
machines:

cf-sketch> activate System::tzconfig tzconfig1 env_linux

Using generated activation ID ‘System::tzconfig-1’.

Using existing parameter definition ‘tzconfig1’.

Using existing environment ‘env_linux’.

Activating sketch System::tzconfig with parameters tzconfig1.

Note that both parameter sets and environments have names,
and all that the activate command does is “tie together” a
sketch, a parameter set, and an environment.

After we have activated a sketch, we need to deploy and
execute it, which can be done as a one-time operation using
the run command (mostly for testing your parameters). Note
the change in the system timezone before and after the sketch
executes:

date

Tue Aug 20 06:40:29 UTC 2013

#./cf-sketch.pl

cf-sketch> list activations

The following activations are defined:

Activation ID System::tzconfig-1

 Sketch: System::tzconfig

 Parameter sets: [tzconfig1]

 Environment: ‘env_linux’

cf-sketch> run

Runfile /var/cfengine/masterfiles/cf-sketch-runfile-standalone.

cf successfully generated.

Now executing the runfile with: /usr/local/sbin/cf-agent -f /

var/cfengine/masterfiles/cf-sketch-runfile-standalone.cf

2013-08-20T06:40:47+0000 notice: R: System timezone updated

to Mexico/General

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 12

Configuring Your Linux System with the CFEngine Design Center

cf-sketch>

date

Tue Aug 20 01:40:51 CDT 2013

Of course, you don’t want to run the sketches manually, when
the purpose of CFEngine is to keep your systems automatically
configured. To automate the process, we must incorporate the
execution of the sketches into the periodic execution of CFEn-
gine by using the deploy command:

cf-sketch> deploy

Runfile /var/cfengine/masterfiles/cf-sketch-runfile.cf

successfully generated.

In the current release of CFEngine, we must make one change
to the included CFEngine policy files in order for the sketches
to be properly loaded. Open the /var/cfengine/masterfiles/
promises.cf file and find this section:

 # COPBL/Custom libraries. Eventually this should use

wildcards.

 @(cfengine_stdlib.inputs),

 # Design Center

 # MARKER FOR CF-SKETCH INPUT INSERTION

 “cf-sketch-runfile.cf”,

Because sketches load their own libraries, we must comment
out the line that loads the CFEngine standard library and add
a line that loads sketch-required files. The end result looks like
this:

 # COPBL/Custom libraries. Eventually this should use

wildcards.

 # @(cfengine_stdlib.inputs),

 # Design Center

 # MARKER FOR CF-SKETCH INPUT INSERTION

 “cf-sketch-runfile.cf”,

 @(cfsketch_g.inputs),

Now the sketch we activated will be executed every five
minutes to check whether anything needs to be fixed. If you
manually change the timezone of your system, you will notice
that within five minutes it will change back to the one you
configured in the sketch.

We will now configure two additional sketches for basic
system configuration tasks, following the same install-param-
eters-activate sequence we already saw. First, we will use
CFEngine to maintain our /etc/motd file:

cf-sketch> install System::motd

Sketch System::motd installed under /var/cfengine/masterfiles/

sketches.

cf-sketch> define params System::motd

Please enter a name for the new parameter set (default:

System::motd-entry-000): motd1

Querying configuration for parameter set ‘motd1’ for bundle

‘entry’.

Please enter parameter motd (Message of the Day (aka motd)).

 (enter STOP to cancel)

motd : This sytem is managed by CFEngine. Go away!

Please enter parameter motd_path (Location of the primary,

often only, MotD file).

 (enter STOP to cancel)

motd_path [/etc/motd]: /etc/motd

Please enter parameter prepend_command (Command output to

prepend to MotD).

 (enter STOP to cancel)

prepend_command [/bin/uname -snrvm]: /bin/uname -snrvm

Please enter parameter dynamic_path (Location of the dynamic

part of the MotD file).

 (enter STOP to cancel)

dynamic_path :

Please enter parameter symlink_path (Location of the symlink to

the motd file).

 (enter STOP to cancel)

symlink_path :

Defining parameter set ‘motd1’ with the entered data.

Parameter set motd1 successfully defined.

cf-sketch> activate System::motd motd1 env_linux

Using generated activation ID ‘System::motd-1’.

Using existing parameter definition ‘motd1’.

Using existing environment ‘env_linux’.

Activating sketch System::motd with parameters motd1.

Note that we do not need to define additional environments
for these sketches; they are being activated using the same
env_linux environment we prepared previously.

We will also use CFEngine to maintain some security-related
parameters in the system’s sshd configuration:

cf-sketch> install Security::SSH

Sketch Security::SSH installed under /var/cfengine/masterfiles/

sketches.

cf-sketch> define params Security::SSH

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 13

Configuring Your Linux System with the CFEngine Design Center

Please enter a name for the new parameter set (default:

Security::SSH-sshd-000): ssh1

Querying configuration for parameter set ‘ssh1’ for bundle

‘sshd’.

Please enter parameter params.

 (enter STOP to cancel)

Next key (Enter to finish): PermitRootLogin

params[PermitRootLogin]: no

Next key (Enter to finish): X11Forwarding

params[X11Forwarding]: no

Next key (Enter to finish):

Defining parameter set ‘ssh1’ with the entered data.

Parameter set ssh1 successfully defined.

cf-sketch> activate Security::SSH ssh1 env_linux

Using generated activation ID ‘Security::SSH-1’.

Using existing parameter definition ‘ssh1’.

Using existing environment ‘env_linux’.

Activating sketch Security::SSH with parameters ssh1.

Before those sketches take any effect, they must be deployed:

cf-sketch> deploy

Runfile /var/cfengine/masterfiles/cf-sketch-runfile.cf

successfully generated.

Within a few minutes, you should see those changes reflected
in your system:

cat /etc/motd

This sytem is managed by CFEngine. Go away!

egrep ‘PermitRoot|X11For’ /etc/ssh/sshd_config

PermitRootLogin no

X11Forwarding no

We are done! Your system automatically will be maintained
according to the criteria you set. Try modifying any of these
settings to see how CFEngine automatically brings them back
into compliance. To get a better idea of all the things you can do
with the Design Center, I encourage you to explore the available
sketches.

Conclusion
In this article, I have only touched on the surface of what the
Design Center can do. To learn more about the Design Cen-
ter’s capabilities and how to contribute new sketches, read the
CFEngine documentation at http://cfengine.com/docs.

References
[1] CFEngine Design Center: http://cfengine.com/
cfengine-design-center/

[2] Download CFEngine: https://cfengine.com/downloads.

[3] Vagrant: http://www.vagrantup.com/

[4] Vagrantfile: https://raw.github.com/cfengine/
vagrant-cfengine-provisioner/master/sample/
community_vagrant-1.2/Vagrantfile

[5] CFEngine Design Center on GitHub: https://github.com/
cfengine/design-center

https://www.usenix.org
http://cfengine.com/cfengine-design-center/
http://cfengine.com/cfengine-design-center/
https://cfengine.com/downloads
http://www.vagrantup.com/
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://github.com/cfengine/design-center
https://github.com/cfengine/design-center

