Cfengine in a Day

Configuration Management for
Complex Business Problems

Mark Burgess

© Cfengine

F—,-r
engine

., "The most profound technologies are those that
N {.,y \ disappear. They weave themselves into the fabric of

% ;‘ %' every day life until they are indistinguisable from it."
X **:? ‘ --Mark Weiser (Xerox PARC)

£H rp not on that key...

%
A
L
S

INTERFACE

ABSTRACT VIEW

PHYSICAL VIEW

Architecture of computing to come

Cfengine where?

|‘ On demand, disposable
computing

MUNITURING CLOUD API) .
K CONTROL PLACEMENT POLICY P Cfenglne IS the glue and

s) maintenance at any level
nk n Q to integrate subsystems
s m...i

* Extensible concept, can

adapt to new
CONTROL CONTROL tech n Olog ieS

STOIAGE
- E

.Eﬂ%r

.,s?:wz',ef_.mf;f;amf Jll"" I
gy i« Seamless services
LA F:
% ”‘ e

Risky implementations or quick regular dependability?

* Rockets

— Planning

— Overhead

— One chance only
— Major rollout

o 747

— Less planning
— Reusable

— Change anytime

Cfengine is...

« An extensive language for manipulating cross-
platform environments

« A simple monitoring framework with feedback
« A knowledge resource

e Cfengine is reborn in the Cfengine 3 family

o Cfengine Community Edition
e Cfengine Nova Edition
« Cfengine Constellation

e Cfengine Galaxy (Er@ﬁé

What's unique about Cfengine?

It's a full maintenance system, not just “roll out”

» Self-healing (convergent)
» Self-monitoring

« Feedback
Lightweight

Versatile framework for many tasks — not just
package based

It's based on a model called Promise Theo ,_
(E@ﬁé

Convergence = self-healing

Baseline and recipe Convergence to end state

_p—
—

e— e
1ENOIre

=
o=

Solving complex business problems

e Language interface
* Low level flexible primitives
o Create multiple interfaces

* Enables multiple overlapping cells
 Federated management

 Great freedom to choose

« “Devops” - complete service application from metal

Two approaches to starting

* Hit the ground running / get it done / top-down
» Get started quickly
* Don't want to think too hard in the beginning

* Psych up slowly / build a model / bottom-up

 Build a mental model first

« Strict QA process around the system

Two aspects to Cfengine
o Study the simple use of Cfengine

 |nstall a package from www.cfengine.com (Tech Corner)
 |nstall from source code at www.cfengine.org

e Learn about configuration by example

Top down

« Study the Cfengine language

« Jump into a coding approach — syntax, etc
e Bottom up

http://www.cfengine.com/
http://www.cfengine.org/

Ultimate goal / benefit

* Learn a method for a scalable way of working

 Take an issue
* Turn it into maintainable promises (“guarantees”)
 Code it in Cfengine
* Keep in mind motivations and constraints:
* Business integration

* Reproducible and agile

 Everything you say becomes a promise

Some hands on examples

» After the session you can try "hands-on” examples
in the Cfengine source code.

* These get installed from source In:

cd /usr/local/share/doc/cfengine
cf-agent -f ./unit example.cf

cf-agent -vf ./unit example.cf

(TR

Installing

e tar zxf cfengine-3.x.x.tar.gz
« configure && make install
e /usr/local/sbin/cf-key

e cp /usr/local/sbin/cf-* /var/cfengine/bin

« cf-agent

What is your perspective?

e Again we can go top-down or bottom-up

* By issue / service
* By resource / object class

 How do you see your system?
* As config files? (/etc/passwd)
* As packages? (apache2)
* As services? (DNS)

* As procedures (patching)

* As business problems?
(E@HE

By “service”

» Cfengine “bundles” certain promises together,
so we can build different abstractions or
interfaces to the low-level

* Orion Cloud pack is an example of this

e Make a bundle for each service

« Comment in or out, or switch on/off

(F?

By “resource”

« COPBL library

» A standard library interface

» Lingua franca for common issues and problems

* The downside of simplifications is that they
always break down. But Cfengine allows you to
make new ones without delving into the code

(F?

Gallery of basic promises

Examples: the wrapper

body common control

{

bundlesequence => { “main”};
inputs => { “cfengine stdlib.cf” };

}

. RED = cfengine word
bundle agent main

{ BLUE = user defined word
example Or COPBL
}

BLACK = user defined data

Create files / dirs

files:

"/home/mark/tmp/test plain"

perms => mog(“644"”, "“root”, *“wheel”),

create => "true";

"/home/mark/tmp/test dir/."

perms => mog(“644"”, *“root”, *“wheel”),
will add +x for dirs, see also rxdirs

create => "true";

(TR

Copy files

files:
"/home/mark/tmp/test plain"
copy from => local cp("$(sys.workdir)\bin\file");
"/home/mark/tmp/test dir"

copy from =>
secure cp("$(sys.workdir)/bin","”serverhost”);

Copy directories / trees

files:
"/home/mark/tmp/test dir"

copy from => local cp("$(sys.workdir)\bin\."),
depth search => recurse("inf");

"/home/mark/tmp/test dir"

copy_from => secure cp("$(sys.workdir)/bin",”serverhost”),

depth search => recurse("inf");
Gz

Editing password/group files

vars.

"userset" slist => { "userl", "user2", "user3" };

files:

"/home/mark/tmp/passwd"

edit line =>
set user field("mark","7","/set/this/shell");

"/home/mark/tmp/group"

edit line =>
append user field("root","4","@(main.userset)");

(TR

Editing cron files

methods:
"cron"
usebundle => cronjob("/bin/ls","mark","*","5,10");
"cron"

usebundle => cronjob("/bin/pwd", "mark","*","5,10,15");

Disabling and rotating

files:

"/home/mark/tmp/test create"”
rename => disable;

"/home/mark/tmp/rotateme"
rename => rotate("4");

(TR

Hashing for change detection

files:

"/home/mark/tmp" -> "me"

changes => detect all change,
depth search => recurse("inf"),
action => background;

"/home/mark/LapTop/words" -> "you"
changes => detect all change,
depth search => recurse("inf");

(TR

Command embedding

commands:
Sunday.Hr04.Min05 10.myhost::
“/usr/bin/update db”;
any::

“/etc/mysqgl/start”

contain => setuid(“mysql”);

aJengine

Kill processes

processes:
14 Snmpdl’

signals => { “term”,

“kill” };

(TR

Restart processes

processes:
“httpd”
restart class => “lift off”;
commands:
lift off::

“/etc/init.d/apache2 restart”;

(E@ﬁé

Check filesystems

storage:

n /usrn

volume

=> mycheck ("10%");

(TR

Mount filesystems

storage:
"/home/mark/server home"

mount => nfs("myserver","/home/mark");

(TR

Software/patch installation

packages:
"apache2"

package policy => "add",
package method => generic;

(TR

bundle agent app_web_phpapache
{

PHP-Web service

centos:: "php_pkgs" slist => { "httpd", "php" };
ubuntu:: "php_pkgs" slist => { "apache2", "php5" };

packages:
"$(php_pkgs)"
comment => "Install Apache webserver with PHP",
package_policy => "add",
package method => generic,
classes => if_ok("ensure_php_apache_running");

processes:
centos.ensure_php_apache_running::
" *httpd.*"
restart_class => "start_httpd";
ubuntu.ensure_php_apache running::
" *apache2.*"
restart_class => "start_apache”;

commands:
start_httpd::
"letc/init.d/httpd start";

start_apache::
"letc/init.d/apache?2 start"; F—
} engine

SQL service

bundle agent app_db_mysq|l
{
vars:
"mysql_pkgs" slist => { "mysql-server" };

packages:
"$(mysql_pkgs)"
comment => "Prepare MySQL database”,
package policy => "add",
package method => generic,
classes => if_ok("ensure_mysql_running");

files:
ubuntu::
"[tmp/mysql.sock"
comment => "Create a temp link to mysql.sock",
link_from => In_s("/var/run/mysqld/mysqld.sock");

processes:
ubuntu.ensure_mysql_running::
"/usr/sbin/mysqld.*"
restart_class => "ubuntu_start mysql";

commands:
ubuntu_start_mysql::
"/etc/init.d/mysql start";

What of Knowledge?

* Hopefully these examples are fairly readable to
with basic familiarity

e What?
 When?
e \Where?
 Why?

* But we still don't know why we are making
these promises

* |nstrument configuration with semantic commentar
fengine

Commentary

bundle component name (parameters)

{
what type:

where;when::

Traditional comment

“promiser” -> { “promiseel”, “promisee2” },

comment => “The intention ...”
handle => “unique id label”,
attribute 1 => body or valuel,
attribute 2 => body or value2;

4

engine

Example — informing operators

processes:
Comments to expert policy writers
“snmpd”
comment => “Make sure SNMP is not active by default”,

handle => “snmp kill”,
Signals => { “term", ukill" };

(TR

Commentary => Knowledge

 The comments appear in log messages

* |n Cfengine Nova and upwards they are turned
into a relational map

» See relationships, impact analysis

e Understand who are the stakeholders in these
promisers

* Tie this knowledge about_policy to other
institutional documentation (cf-know)

(TR

What does simple mean?

e So far this is artificially simple, as we haven't shown
any realistic techniques

 What happens when you have a large number of these?
« Patterns are the key to “scaling up”

e Patterns compress information into expressions
* It's a question of Knowledge Management

* The choice should be yours

e Cfengine tries to give you flexibility

(TR

What does “pattern” mean?

« Something that models many actual cases with a
symbolic expression

« Cfengine uses these pattern expressions:

e Lists — enumerated cases
 Regular expressions + search — look and see

« Classes of hosts where promises will apply

« Patterns in Cfengine are generic “networks” not just
“hierarchies”, so you can avoid OO-modelling traps.

(TR

Classes - when/where

* Not “OQ" classes - actually “sets” of machines
with selected properties

» Cfengine evaluates classes each time it wakes
up to decide which promises apply “here”

promise type:
class expression::

“promiser”

attributes => “values”; (F_:
engine

Class summary

cf3 Defined Classes = (

any verbose mode Sunday Hre8 Morning Min32 Min30 35 Q3
Hr08 Q3 Day2l June Yr2009 Lcycle 2 GMT Hr6 linux atlas
undefined domain 64 bit linux 2 6 27 23 0 1 default

x86 64 llnux x86 64 linux x86 64 2 6 27 23 0 1 default

linux x86 64 2 6 27 23 0 1 default 1 SMP 2009 05 26 17 0

2 05 0400 compiled on linux gnu localhost localdomain
localhost net iface lo net iface wlan0

cfengine 3 0 2a7 cfengine 3 0

cfengine 3 SuSE 1lsb_compliant suse suse na suse 11 1

suse_11 common have ppkeys)
(lergne

Cf3 Negated Classes = ()

Using classes to make decisions

promise type:

myclass::
“promiser 1"
classl|class2::

“promiser 2"

linux.Hr02|solaris::

“promiser_37

(TR

Custom classes

classes:
llmyclassu or => { llsolarisu, "linux" };

"my_diSt" diSt => { llloll,ll20ll,ll40ll,ll30ll

"summary" expression => classmatch(“web.*");

“some” expression => “linux&Hr02|solaris”;

}i

(TR

Class promises are kept at runtime

Cf3 R R b S b b b g b b e S b b i i i b b S b S b b S b S b b b i e e b b i e S b b I i S b b 3

cf3 BUNDLE test

Cf3 RO S b b e S b S b e b b i i S b b S e e b b S b S b b b i S b S b b b S b i b S I S e 4

cf3 SEEE L e e e e e e e e D D e D e D e D
cf3 classes in bundle test

cf3 SEEEE e e e e e e e e e e s DD e D e D e e
cf3

cf3 + Private classes augmented:

cf3 + my dist

cf3 + my dist 10

cf3 A myclass

cf3

cf3 - Private classes diminished:

cf3

cf3 ? Public class context:

cf3 ? any

cf3 ? Tuesday

cf3 ? Hrl5

cf3 ? Min35

cf3 ? Min35 40

cf3 ? 03

Combining classes

e Classes are combined with:

e NOT: |
« AND: . (dot) or &
« OR: |or]]

« Parentheses ()

freebsd.! H 02| | solaris. H 03

(freebsd| |1 nux).! nygroup

(TR

Regular expressions?

 Many people find regexs hard — very powerful

» Cfengine (as of major version 3) uses
Perl Compatible Regular Expressions
throughout

 Choose from a menu of simple cases you
understand

* Don't get more fancy than your own limit

 Remember that the point is to make something
difficult seem simple, not to show off your skill!

« Come back to this below e
engine

Regular expression examples

e Crash course

« Dot . matches any character, \. matches “dot”

[a-21258] matches the listed characters
« \s space characters
e + means more than zero

e * Means zero or more

 Examples:

o_*

match anything

* \s+ match at least one whitespace f_
G-

One regex example

files:

“/etc/pass.*"”

perms => mO(“644","rOOt");

(TR

The “access list” paradigm

* We find it easy to think in terms of lists
 Enumerated data sets, like a “for” loop

» Cfengine expands list variables transparently
so that a single expression can represent many
similar promises:

files:

“$(list variable)”

perms => mo("”644","root"); (I:_..:
engine

Define a variable

vars:
“scalar” string => “scalar values”;
“listvar” slist => { “one”, *“two”,

@(otherlist) };
“otherlist” slist => { “three”, “four” }

commands:

“ /bin/echo hello $(liStVar)";

(TR

#

apache's default installation

APACHE_MODULES="access actions alias asis auth autoindex cgi dir imap include log_config mime
negotiation setenvif status userdir"

your settings

APACHE_MODULES="authz_host actions alias auth_basic authz_groupfile authn_file authz_user autoindex
cgi dir include log_config mime negotiation setenvif status asis dav dav_fs ssl php5 dav_svn authz_default
xyz superduper”

Type: string

Default: "

ServiceRestart: apache2APACHE_USE_CANONICAL_NAME="off"

Type: list(Major,Minor,Minimal,ProductOnly,OS,Full)

Default: "OS"
ServiceReload: apache2
#

How much information the server response header field contains about the server.
(installed modules, versions, etc.)

see http://httpd.apache.org/docs-2.0/mod/core.html#servertokens

#

APACHE_SERVERTOKENS="0S" ?
#

APACHE _EXTENDED STATUS="off"

Type: list(on,off)

Default: "off"

ServiceRestart: apache2
#

Enable buffered logging

.
APACHE_BUFFERED_ LOGS="off" engine

vars:

APACHE

"add modules" slist => {
"dav",
"dav_fs",
"ssl",
"php5",
"dav_svn"

}i

"del modules™ slist => {
llphp3 n ’
n jku ,
"userdir",
"imagemap"

}i

column edits:

"APACHE MODULES=.*"

"APACHE MODULES=.*"
edit column => quotedvar("$(del modules)","delete");

vars. USERS

“users” slist => readlist(file);
utmp" String => ”/tmp/scratCh" H
“testing” string => “/var”;

files:

ll$(tmp)ll
edit line => ReadPasswds("$(testing)/masterfiles/passwd",

"@(this.users)");

"$(testing)/etc/passwd"
edit line => SetPasswds("$(tmp)","@(this.users)");

"S(testing)/home/$ (users)/."

create => "true",
— . " TR T—
perms => userdir("$(users)"); Iengme

bundle agent testbundle VMs
{

vars:
"vmlist" slist => { "hostl", "host2",
"host3", "host4",
"host5" };

methods:

"any" usebundle => buildvm("$(vmlist)");

Blocks: bundles and bodies

 Bundles are collections of promises under a
single name — like a “subroutine”

* Bodies are template macros for simplifying
complex sets of promise attributes.

e Declaration:

bundle agent myname() body perms yourname ()

{ {

files: mode =>

perms => yourname, }

“Calling” bundles

e Two ways:

* Add to bundlesequence (master schedule)
 Methods promises (more flexible)

bundle agent myname ()
{
methods:
classes::
“group” usebundle => yourname(“args”),

}

Linkage...

body common control

{

bundlesequence => { “myname” };

}

bundle agent myname
{
methods:
classes::
“group” usebundle => yourname(“args”),

}

The pattern

Cfengine word User defined word
What is it? What’s it for? What’'s its name?
T
bundle cerver myname
body perms yvourname
sighals

Cfengine Architecture

» Cfengine is an agent based system
* |t is composed of multiple binaries

* |t admits any kind of network model

* Uses peer to peer authentication for fully
decentralized and devolved management

 Works on and offline (not dependent on network)
 Core functions are not dependent on 3" party

pre-requisites
(&g

Cfengine components

cf-agent (cfagent)

cf-serverd (cfservd)

cf-monitord (cfenvd)

cf-execd (cfexecd)

cf-promises — promise checker

cf-report — reporting tool

cf-know — integrated knowledge management

Cf-runagent - test
(E@ﬁé

host2

hostt

|

|

|

_ —
[— |m %

! g = = & m
: D C >]
12 |8 |8 |8 | |5
| ® 7 E i 2
|

| 0 k3 0 0 o
|

“] L r) L 2 L9 r
|

Policy architecture

* Every machine can be standalone if you want

» Centralization is a useful tool for consistency
but a bottleneck for performance

« Use centralization wisely

|t is less important than you think

* There is no push in cfengine

(TR

Stages of policy

® -

VAR

oitibaionseners () () (T
Ve SN

Endhosts @ @ @ O 00 © 00

Policy Definition Point

Client-Server communications

o SSH-like model
* Not a certificate model
* Not susceptible for SSL bugs/vulnerabilities

» Cfengine Nova

* Engineered to FIPS 140-2 standards

* Scales up to a few hundred machines with maximal
usage, 5 minute checks and no load balancing

» Can spread out policy updates more as the

numbers grow
(E@ﬁé

Hands on

unit_server _copy localhost.cf

Server copy -single file example

body common control

{
bundlesequence => { "testbundle" };
version => "1.2.3";
}
bundle agent testbundle
{
files:
"/home/mark/tmp/testcopy"
copy from => remote cp("/home/mark/src","127.0.0.1"),
perms => system,
depth search => recurse("inf");
}

body perms system

{
mode => "0644";

} Eﬁﬁ e

body copy from remote cp(from,server)

{

source => "S(from)";

copy backup => "true";

purge => "true";

servers => { "$(server)", “failover host” };
}

body server control

{

allowconnects > { "127.0.0.1" };
allowallconnects > { "127.0.0.1" };
trustkeysfrom => { "127.0.0.1" };

}

bundle server access rules()
{
access:

"/home/mark/LapTop"

admit => { "127.0.0.1" };

F__r i
engine

Voluntary remote services

« Cannot tell cf - agent what to do

remotely, except by offering a new
config to download if localhost has this

as policy

« We can ask cf - agent to run its current
policy immediately with cf - r unagent

e cf -agent can ask another host for a
file If it chooses to cooperate

engine

Public-private keys

e All hosts run cf -serverd

 No danger unless we grant silly access
 Require SSH-like keys for authentication

 Run cf - key on each host

« Security model:

 Supervised key exchange with "t r ust key"
directive

« Access control based on IP /key identity

(TR

Example

Host # /usr/ | ocal / sbi n/ cf - key

Maki ng a key pair for cfengine, please wait, this could take a m nute
Witing private key file to /var/cfengi ne/ ppkeys/| ocal host. priv
Witing public key file to /var/cfengi ne/ ppkeys/| ocal host. pub

Setting up cf-serverd

e Server bundles

* Develop access rules

« For the right to connect

« For file download access or cf-runagent
access

* Must exchange public keys before
access can be granted

EES TSI SIS SRS SRS SIS SIS SIS EES T
Server config

AR R AR R AR AR AR A AT AR AR TR AR A R AR R AR TR A AR AR AR AT RHH

body server control

{

allowconnects = { "127.0.0.1" , ":scl",

"I10\.0\.1\..*" };

allowallconnects => { "\Ql27.0.0.1" , "s:l",

"I10\.0\N.1\..*" };

trustkeysfrom => { "127\.0\.0\.1" , "s::1",
"I10\.0\N.1\..*" };

}

AR AR R AR R AR A AR AR AR TR A AR AR A AR AT RA AR A RARRARTRAS

bundle server access rules()

{

access:

"/home/mark/LapTop"

admit => { "\Q127.0.0.1" };
} -5
gine

Checklist

« Anti-DOS attack rules: allow.*connects

e Switch on "trust" just long enough to
exchange public keys with clients

e This is a "nuisance", I.e. It's security
 Like SSH, but not terminal-interactive

lengine

Trouble?

« Unknown service?

« Register cfengine in /etc/services, port
5308/tcp

* Access denied?
 Forget domain name declarations?
« Forget trustkey?
« Forget access admit/grant rule?
 Run with -v -d2 to see what's going on....
« Remove server-side trust, just in case
 Don't want unauthorized hosts to exchange

keys & possibly trick us
(E@ﬁé

Connection procedure

e Client attempts to connect to port 5308

e Server examines |IP address of
connection and applies rules from

 allowconnects
e allowallconnects
« denyconnects

e If host Is allowed to connect, read max
2048 bytes to look for valid halil

Authentication procedure

e Client sends ID and public key to server
e Server checks whether public key is
known

 |If known, host and user are confirmed, go
to access control

 If unknown, use trustkeysfrom rules to
check whether we should accept the
client's asserted identity

 If not in trustkeysfrom list, break

connection (F_:
engine

 If willing to trust, go to further checks

Verify ID

o If skipverify iIs set, ignore checks/NAT

* Else check asserted identity by reverse
DNS lookup

« |If fails break off
e Check user ID Is In allowusers

e |f fails break off
e Go to file access control

Access control rules

e Classes tell us on which host the rule is
enforced, NOT to which hosts access is
granted

o Syntax: /directory names addresses
* admit then deny

 Mapping of privilege napr oot

e Forced encryption i f encr ypt ed

» Symbolic links are not honoured!

(TR

Most specific rule first!

» Access control is evaluated by the rules:

* First admit rule that matches wins

» All other admit rules are ignored

 No admit rule means you're denied!

* Then look at deny rules (“overrides”)

* First deny rule that matches wins

» All other deny rules are ignored

* No deny rule means you're admitb@ﬁﬁé

IPVv6 issues (old)

» Cfengine tries to use the first address from
DNS that responds.

 |f IPV6 is configured (but wrongly) it will fail
 AAAA records in DNS are still messed up

 .ip6.int (this is deprecated but it works)

« .ip6.arpa (IETF decided this but it doesn't work
yet)

(TR

Scalability considerations

* Avoid client-server communication (local work)
e Or use cf-execd splaytimes, or...

bundle agent example

{

classes:

"my result" expression =>
splayclass("$(sys.host)$(sys.ipv4)","daily");

reports:
my result::

"Load balanced class activated";

Using fail-over servers in copy

bundle agent copy

{
files:
"/tmp/testl-copy"
copy from => cp("/tmp/testfilel”, "host");
"/tmp/test2-copy"
copy from => cp("/tmp/testfile2", "host");
}

body copy from cp(from,server)

{

source => "§$(from)";
servers => { "S(server)", “failover.example.org” };

}

Using round-robin servers in copy

bundle agent copy
{

classes:

“flip a coin” expression => isgreaterthan(randomint(1,100),50);
files:
"/tmp/testl-copy"
copy from => flip cp("/tmp/testfilel",

"hostl", "host2");
}

body copy from flip cp(from,serverl, server2)

{

source => "S(from)";

flip a coin:: servers => { "$(serverl)", “$(server2)” };
!flip a coin:: servers => { "§(server2)", “$(serverl)” };

}

Dealing with a firewall

 Check out the FAQ section of online docs

OnL “Secule al Lt

(TR

Dealing with a firewall

 Check out the FAQ section of online docs

* Several issues
 NAT problems
- skipverify,skipidentify
» Updating config from secure -> DMZ
- Opening ports for pull

* Need to think models
* Compare likelihood of bugs in cfengine with that

of bugs in firewall...)
g (Er@ﬁe’

Policy servers

e These are the distribution servers

 May be several for fail-over, scaling

 Each machine gets a copy of the entire policy and
decides which parts apply

 Each machine caches its policy, knows its part
In the music, so robust to communication

breakdowns
 QOrchestration
e Once machine chosen to be a consistent

source Eginé

Extensible interfaces

» So far we used the COPBL = Community Open
Promise Body Library

* You can roll your own, and/or contribute back

e Standardization of these interfaces is an
industry imperative

* |t is Knowledge Management

(TR

Promise bodies

* Let's go through the examples again and see
what's going on underneath

Create files / dirs

files:

"/home/mark/tmp/test plain"
perms => mog(“644"”, "“root”,
create => "true";

body perms mog(mode,user,group)
{

owners => { "S$(user)" };

groups => { "S(group)" };

mode => "$(mode)";

}

“wheel”),

(TR

Disabling and rotating

files:

"/home/mark/tmp/test create"
rename => disable;

"/home/mark/tmp/rotateme"
rename => rotate("4");

body rename disable

{

disable => "true";
disable suffix => " blownaway";

}

body rename rotate(level)

{

rotate => "$(level)";

}

(TR

Hashing

"/home/mark/tmp" -> "me"

changes => detect all change,
depth search => recurse("inf"),
action => background;

"/home/mark/LapTop/words" -> "you"
changes => detect all change,
depth search => recurse("inf");

body changes detect all change
{

hash => "md5";
report changes => "content";
update => "yes";

}

(TR

Check filesystems

storage:

"/usr" volume => mycheck("10%")

°
4

body volume mycheck(free)

{
check foreign => "false";
freespace => "S(free)";

sensible size => "10000";
or “10k” (but not “10K")
sensible count => "2";

}

(TR

Mount filesystems

storage:
"/home/mark/server home"

mount => nfs("myserver","/home/mark");

body mount nfs(server,source)
{

mount type => "nfs";

mount source => "§(source)";
mount server => "§$(server)";
#mount options => { "rw" };
edit fstab => "true";

}

(TR

Software/patch installation

packages:
"apache2"

package policy => "add",
package method => yum;

body package method yum

{
package changes => "bulk";
package list command => "/usr/bin/yum list installed";

package list name regex => "(["T.]Ft).*";
package list version regex => "["\s]\s+(["\s]+).*";
package list arch regex => "[".]+\.(["\s]+).*";

(TR

Search and compress files

files:
"/home/mark/tmp/testcopy"”
file select => pdf files,

transformer => "/usr/bin/gzip $(this.promiser)",
depth search => recurse("inf");

body file select pdf files

{
leaf name => { ".*\.pdf" , ".*\.fdf" };
file result => "leaf name";

}

(TR

Search and compress files - 2

files:
"/home/mark/tmp/testcopy/.*\.pdf"

transformer =>

"/usr/bin/gzip $(this.promiser)";

(TR

Hands on:

unit_locate files and compress.cf

Back-references in PCRE

* We can extract parts of the matching string with

()

files:

“/home/.*/\.ssh/authorized keys”
edit line => add key(“$(somekey)”);

"/home/(.*)/keyfile"
create => "true",
edit line => AppendIfNoLine("key $(match.1l)");

(TR

Back-references $(match.n)

bundle edit line myedit(parameter)
{

replace patterns:
replace shell comments with C comments

"F(.F)" # () make regex backrefs

replace with => C_comment,
select region => MySection("New section");

}

body replace with C_comment

{

replace value => "/* $(match.l) */";
occurrences => "all";

} (Er@ﬁ e

Selecting regions

body select region MySection(x)

{

select start => "\[$(x)\]\s*";
select end => "\[.*\]";

}

[Section Name]

comments
Stuff

[Next Section]

more stuff
(R

Selecting HTML regions

body select region MySection(x)

{

select start => "<$(x)>";
select end => "</$(x)>";
}

 Item 1
 Item 2

(TR

Hands on:

unit edit comment lines.cf
unit_edit_sectioned file.cf

(F?

Going forward with Cfengine

 Road map for Cfengine

() N OV a “ Investigate existing State

“ Plan Policy Changes

» Constellation et

= Publish the Policy to
all autonomous clients

DEPLOY
» Galaxy

e Designed for

Agents maintain
Desired End-State
and Self-Repair

“ Sample and report

® S Ca I i n g # Alarms about promised State

* Integrated knowledge

* Business integration — compliance etc F

Service Management

cf-agent/cf-know cf-know

cf-agent
cf-agent

cf-agent
cf-agent

cf~-know

Strategic decisionmaking

-
1]
=2 Company and competition HUMAan resources
(1] ‘ - h .
c policy management
i
=
Account management Service planing Development
FEI:”LE;; Financial ' Service
. _p_ management na design
management -
1‘ A A A ¢ Y
E . Service g‘
— I build & test %
3] 3
=
: — > . A
QUperational processes
= I
e | .
= I + A
y .
e B El_lH_uIlr:'l
= ’ » - - Managemenl
—}
|

Now does Nova work?

« Adds simpler get started procedure (turnkey)
« Based on a default model “out of the box”

« Adds automatic auto-analysis and knowledge map
generation

« Extended reporting

* WWindows support. VM support, DB support, multi-
node orchestration, GUI, LDAP integration, Zenoss
integration....

* Designed to be simple to upgrade both to new

Nova and Constellation
(E@ﬁé

Cfengine Nova Policy editor

Company Policies MNew | Dry run | Save | Publish | Cancel | Options

[Canfiguration Management
(1 pPcl-Dss webserver_process.cf hardening_all.cf webserver pack.cf

wehserver process.cledit
webserver pack.cf edit
webserver |P.cf edit
hardening_all.cf edit

Maximize

Literals

O.0el101

123

OhO01010011100
Oo01234567
Ox093765432 1labodef
Error Literals

mission status "may be seen from"™
ju)ia]u]nl

arcitect view
rT'i:'ni:':__]nr ';-'i[‘:'.-'n.'

rator view
3tring Literals pperatorvie

|]:;":|:r_-'-|I 11

"Gl:ld'lll FFrr

FFFF PP

thesfmﬁgﬁﬁ,, “Owerview of IT operations”™ (Text)
'"'that he gave

hiz only begotteni' ''!

'that whosoewer believeth b

in him'

Online help - Copernicus

Examples Output Dry Run (webserver process.cf): Syntax checks(webserver process.cf):
Reference manual

Commands

Best-practices

Special Topics

Click to Click to
view all view all

=TT e ulaing Huges | = e YESIHIT

PLAMMNIMNG

patchesingalled ..

sarver lifecycle

management issues

manager view

businesswvalue

compliance report

SpeTd

KNOWLEDGE

software installed..

lastseen report

pro

setuid report faults

operator view
amises not kept ..
SECURty view

ion status system outputs
promiss report

architect view

zervice catalogue

References to ' "in the context of
‘system_Knowledge'

Also mentioned in contexts of: mission_partal wiews any
rission_status:: network host status: (URL)
mission_status:: portal: (URL)

mission_status:: weakest hosts: (URL)

mission_status. system_outputs:: "Wessages sent by cfenging to the
aperators as a matter of policy " (description)

mission_status. host_portal:: "Foral to access mission status,
monitored fost data® (description)

mission_status. system_reports:: "Reports from around the
syatem” (description)

mission_status. system_policy:: "Local policy description with
corments and dependencies” [description)

systern_knowledge. mission_status:: "Owendew of [T
operations” (description)

Insight, lea

mission status "may be seen from"

SECUrty view
operator view
manager view
architect view

MEL -

Ve e STO POt al =il (ST s W e e

m n m n B Secure cfengme com/demaoivitals. php

CFENGINE MISSION PORTAL

SLMMARY

wital signals

Eternity iU hio.no

LISErs

Latest data

STATUS

Past 4 hours

[

PLAMNNING KMNOWLEDGE

O Pl P PORCN Tt id

Sun hdarG 10:35:34 2011

eternity.iu.hio.no

rootprocs

Latest data
Sun Marf 10:25:34 2011

Eternity.iu.hio.no

otherprocs

Latest data
Sun harG 10:35:34 2011

eternity.iu.hio.no

TRIHTE

Past weelk

Hmm |||||H m

ﬂ._l._‘i'l_

|M||l mm ﬂ\‘n I

Statistical complete history

=Aw

I with Acnimn granernen & fun B & 18RS P01
a3

- |

B B

. el =l I~ wy |

”H'N H

Jw |

kuJ'M

IM\HF |

L- —PERIEIFIE RSS2
m ': m B Secure cfengine. comddemodhost php B * | Search with Google
" =
CFENGINE MISSION PORTAL B ©. aawD

SUMMARY STATUS PLAMNMNING < LEDG Status © host

Hour Perf C Coms Anom
894 100.0 100.0 g 98.7

Host Details (discovered)

Alias: eternity.iu.hio.no Pulse 1]1(] ,,]h] signs .

05 class: linux_xB6_Gd a0 'I|I|J ” 1|] 1||[.l |Ih y F‘I '__’1bl'. (! 1_[.-1;.:.'_. |
Release: 2.6.22 19-04-default bl

Flawour, SusE_10

Last IP-address: 128.38.89.253

Last data: Sun Mar 6 10:35:34 2011

o Simple search string:

SHA=8863e02018e2651280be¥2dE8b2cd 1222386338 acB acf208 e 1b 136 b4bdc2b 10

COMmit

Average Load: 23.28%

AVErage Free : :
Disk: 19.04% Wonitored jobs

AwErage network
speed: 0.01 A 51.00 bytes/s

Total nurmber under surveillance: 5

|] 1 this hnst

[#
)
[

Finally: how do you view cfengine?

L4

¥. ¥

vy
|

I:n Ine

Generic promise syntax

what promise:
when where::
“what object” -> { “stakeholder” },

how attribute 1 => how valuel,
how attribute 2 => how valueZ;

(TR

Thank you!
Advance to Cfengine Nova

contact@cfengine.com

(TR

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

