
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

bash
Pocket Reference

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

bash
Pocket Reference

Arnold Robbins

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

bash Pocket Reference
by Arnold Robbins

Copyright © 2010 Arnold Robbins. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-
bastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Loranah Dimant
Proofreader: Loranah Dimant
Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
May 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc., bash Pocket Reference and re-
lated trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-38788-4

[TM]

1272386645

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Contents

The Bash Shell 1
Conventions 2
History 2
Overview of Features 3
Invoking the Shell 4
Syntax 6
Functions 18
Variables 20
Arithmetic Expressions 36
Command History 37
Programmable Completion 41
Job Control 46
Shell Options 47
Command Execution 52
Coprocesses 53
Restricted Shells 54
Built-in Commands 55
Resources 109
Acknowledgments 110

Index 111

v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Bash Shell

This pocket reference covers Bash, particularly version 4.1, the
primary shell for GNU/Linux and Mac OS X. Bash is available
for Solaris and the various BSD systems, and can be easily
compiled for just about any other Unix system. The following
topics are covered:

• History

• Overview of features

• Invoking the shell

• Syntax

• Functions

• Variables

• Arithmetic expressions

• Command history

• Programmable completion

• Job control

• Shell options

• Command execution

• Coprocesses

• Restricted shells

• Built-in commands

• Resources

1

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
Filenames, command names, options and inline examples
are shown in constant width. Input that a user should type in
exactly as-is is shown in constant width userinput. Items which
should be replaced with real data in examples and syntax de-
scriptions are shown in constant width replaceable. New terms
and emphasized items are shown in italics. Finally, references
of the form name(N) refer to the manual page for name in sec-
tion N of the online manual (accessed via the man command).

History
The original Bourne shell distributed with V7 Unix in 1979
became the standard shell for writing shell scripts. The Bourne
shell is still found in /bin/sh on many commercial Unix
systems. It has not changed that much since its initial release,
although it has seen modest enhancements over the years. The
most notable new features added were the CDPATH variable and
a built-in test command with System III (circa 1980), com-
mand hashing and shell functions for System V Release 2 (circa
1984), and the addition of job control features for System V
Release 4 (1989).

Because the Berkeley C shell (csh) offered features that were
more pleasant for interactive use, such as command history
and job control, for a long time the standard practice in the
Unix world was to use the Bourne shell for programming and
the C shell for daily use. David Korn at Bell Labs was the first
developer to enhance the Bourne shell by adding csh-like
features to it: history, job control, and additional programm-
ability. Eventually, the Korn shell’s feature set surpassed both
that of the Bourne and C shells, while remaining compatible
with the former for shell programming. Today, the POSIX
standard defines the “standard shell” language and behavior
based on the System V Bourne shell, with a selected subset of
features from the Korn shell.

2 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

The Free Software Foundation, in keeping with its goal to pro-
duce a complete Unix work-alike system, developed a clone of
the Bourne shell, written from scratch, named “Bash,” the
Bourne-Again SHell. Over time, Bash has become a POSIX-
compliant version of the shell with many additional features
overlapping those of the Korn shell, but Bash is not an exact
Korn shell clone. Today, Bash is arguably the most widely used
Bourne-derived shell.

Overview of Features
The Bash shell provides the following features:

• Input/output redirection

• Wildcard characters for filename abbreviation

• Shell variables and options for customizing the
environment

• A built-in command set for writing shell programs

• Shell functions, for modularizing tasks within a shell
program

• Job control

• Command-line editing (using the command syntax of
either vi or Emacs)

• Access to previous commands (command history)

• Integer arithmetic

• Arrays and arithmetic expressions

• Command-name abbreviation (aliasing)

• Upwards compliance with POSIX

• Internationalization facilities

• An arithmetic for loop

Overview of Features | 3

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

Invoking the Shell
The command interpreter for the Bash shell (bash) can be in-
voked as follows:

bash [options] [arguments]

Bash can execute commands from a terminal, from a file (when
the first argument is a script), or from standard input (if no
arguments remain or if -s is specified). The shell automatically
prints prompts if standard input is a terminal, or if -i is given
on the command line.

On many systems, /bin/sh is a link to Bash. When invoked
as sh, Bash acts more like the traditional Bourne shell: login
shells read /etc/profile and ~/.profile, and regular shells
read $ENV, if it is set. Full details are available in the bash(1)
manpage.

Options
-c str

Read commands from string str.

-D, --dump-strings
Print all $"…" strings in the program.

-i
Create an interactive shell (prompt for input).

-l, --login
Shell is a login shell.

-O option
Enable shopt option option. Use +O to unset option.

-p
Start up as a privileged user. Do not read $ENV
or $BASH_ENV; do not import functions from the environ-
ment; and ignore the values of the BASHOPTS, CDPATH,
GLOBIGNORE, and SHELLOPTS variables. The normal fixed-
name startup files (such as $HOME/.bash_profile) are read.

4 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-r, --restricted
Create a restricted shell.

-s
Read commands from standard input. Output from built-
in commands goes to file descriptor 1; all other shell out-
put goes to file descriptor 2.

--debugger
Read the debugging profile at startup and turn on the
extdebug option to shopt. For use by the Bash debugger
(see http://bashdb.sourceforge.net).

--dump-po-strings
Same as -D, but output in GNU gettext format.

--help
Print a usage message and exit successfully.

--init-file file, --rcfile file
Use file as the startup file instead of ~/.bashrc for inter-
active shells.

--noediting
Do not use the readline library for input, even in an inter-
active shell.

--noprofile
Do not read /etc/profile or any of the personal startup
files.

--norc
Do not read ~/.bashrc. Enabled automatically when
invoked as sh.

--posix
Turn on POSIX mode.

--verbose
Same as set -v; the shell prints lines as it reads them.

--version
Print a version message and exit.

-, --
End option processing.

Invoking the Shell | 5

www.it-ebooks.info

http://bashdb.sourceforge.net
http://www.it-ebooks.info/

See the entry for set on page 92 for the remaining options.

Arguments
Arguments are assigned in order to the positional parameters
$1, $2, etc. If the first argument is a script, commands are read
from it, and the remaining arguments are assigned to $1, $2,
etc. The name of the script is available as $0. The script file itself
need not be executable, but it must be readable.

Syntax
This section describes the many symbols peculiar to the shell.
The topics are arranged as follows:

• Special files

• Filename metacharacters

• Brace expansion

• Quoting

• Command forms

• Redirection forms

Special Files
The shell reads one or more startup files. Some of the files are
read only when a shell is a login shell. Bash reads these files:

1. /etc/profile. Executed automatically at login.

2. The first file found from this list: ~/.bash_profile,
~/.bash_login, or ~/.profile. Executed automatically at
login.

3. ~/.bashrc is read by every nonlogin shell. However, if
invoked as sh, Bash instead reads $ENV, for POSIX
compatibility.

6 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

The getpwnam() and getpwuid() functions are the sources of
home directories for ~name abbreviations. (On personal
systems, the user database is stored in /etc/passwd. However,
on networked systems, this information may come from NIS,
NIS+, or LDAP, not your workstation password file.)

Filename Metacharacters
* Match any string of zero or more characters.

? Match any single character.

[abc…] Match any one of the enclosed characters; a hyphen can
specify a range (e.g., a-z, A-Z, 0–9).

[!abc…] Match any character not enclosed as above.

~ Home directory of the current user.

~name Home directory of user name.

~+ Current working directory ($PWD).

~- Previous working directory ($OLDPWD).

With the extglob option on:

?(pattern) Match zero or one instance of pattern.

*(pattern) Match zero or more instances of pattern.

+(pattern) Match one or more instances of pattern.

@(pattern) Match exactly one instance of pattern.

!(pattern) Match any strings that don’t match pattern.

This pattern can be a sequence of patterns separated by |,
meaning that the match applies to any of the patterns. This
extended syntax resembles that available in egrep and awk.

With the globstar option on:

** Match all files and zero or more subdirectories. When followed
by a slash, only directories and subdirectories are matched.

Syntax | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Bash supports the POSIX [[=c=]] notation for matching char-
acters that have the same weight, and [[.c.]] for specifying
collating sequences. In addition, character classes, of the form
[[:class:]], allow you to match the following classes of
characters.

Class Characters matched Class Characters matched

alnum Alphanumeric
characters

print Printable characters

alpha Alphabetic
characters

punct Punctuation characters

blank Space or Tab space Whitespace characters

cntrl Control characters upper Uppercase characters

digit Decimal digits word [[:word:]] is the same as
[[:alnum:]_] (not in POSIX)

graph Nonspace
characters

xdigit Hexadecimal digits

lower Lowercase
characters

Examples
$ ls new* List new and new.1
$ cat ch? Match ch9 but not ch10
$ vi [D-R]* Match files beginning with D through R
$ pr !(*.o|core) | lp Print files non-object and non-core files

CAUTION
On modern systems, ranges such as [D-R] are not port-
able; the system’s locale may include more than just the
uppercase letters from D to R in the range.

Brace Expansion
Bash has long supported brace expansion, based on a similar
feature from the C shell. Unlike filename metacharacters, brace

8 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

expansion is purely textual; the words created by brace expan-
sion do not have to match existing files. There are two forms:

pre{X,Y[,Z…]}post
Expands to preXpost, preYpost, and so on.

pre{start..end[..incr]}post
Here, start, end, and incr are all integers. The shell expands
them to the full range between start and end, increasing
by incr if supplied. Bash ignores leading zeros on incr,
always treating it as a decimal value.

The prefix and postfix texts are not required for either form.
For numeric expansion, start or end or both may be prefixed
with one or more leading zeros. The results of expansion are
padded with zeros to the maximum of the widths of start and
end. The value of incr is treated as a plain integer, as returned
by the C library strtol(3) routine. (Thus a leading zero on incr
causes it to be treated as an octal value.)

Brace expansions may be nested, and the results are not sorted.
Brace expansion is performed before other expansions, and the
opening and closing braces must not be quoted for Bash to
recognize them. To avoid conflict with parameter expansion,
${ cannot start a brace expansion.

Examples

Expand textually; no sorting
$ echo hi{DDD,BBB,CCC,AAA}there
hiDDDthere hiBBBthere hiCCCthere hiAAAthere

Expand, then match ch1, ch2, app1, app2
$ ls {ch,app}?

Expands to mv info info.old
$ mv info{,.old}

Simple numeric expansion
$ echo 1 to 10 is {1..10}
1 to 10 is 1 2 3 4 5 6 7 8 9 10

Syntax | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Numeric expansion with increment
$ echo 1 to 10 by 2 is {1..10..2}
1 to 10 by 2 is 1 3 5 7 9

Numeric expansion with zero padding
$ echo 1 to 10 with zeros is {01..10}
1 to 10 with zeros is 01 02 03 04 05 06 07 08 09 10

Quoting
Quoting disables a character’s special meaning and allows it to
be used literally. The following table displays characters that
have special meaning.

Character Meaning

; Command separator.

& Background execution.

() Command grouping.

| Pipe.

< > & Redirection symbols.

* ? [] ~ + - @ ! Filename metacharacters.

" ' \ Used in quoting other characters.

` Command substitution.

$ Variable substitution (or command or
arithmetic substitution).

Start a comment that continues to the end of the
line.

space tab newline Word separators.

These characters can be used for quoting:

" "
Everything between " and " is taken literally, except for
the following characters that keep their special meaning:

10 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

$
Variable (or command and arithmetic) substitution
will occur.

`
Command substitution will occur.

"
This marks the end of the double quoted string.

' '
Everything between ' and ' is taken literally, except for
another '. You cannot embed another ' within such a
quoted string.

\
The character following a \ is taken literally. Use within
" " to escape ", $, and ̀ . Often used to escape itself, spaces,
or newlines.

$" "
Just like " ", except that locale translation is done.

$' '
Similar to ' ', but the quoted text is processed for the
following escape sequences.

Sequence Value Sequence Value

\a Alert \t Tab

\b Backspace \v Vertical tab

\cX Control character
X

\nnn Octal value nnn

\e Escape \xnn Hexadecimal value nn

\E Escape \’ Single quote

\f Form feed \" Double quote

\n Newline \\ Backslash

\r Carriage return

Syntax | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Examples
$ echo 'Single quotes "protect" double quotes'
Single quotes "protect" double quotes
$ echo "Well, isn’t that \"special\"?"
Well, isn’t that "special"?
$ echo "You have `ls | wc -l` files in `pwd`"
You have 43 files in /home/bob
$ echo "The value of \$x is $x"
The value of $x is 100

Command Forms
cmd & Execute cmd in background.

cmd1 ; cmd2 Command sequence; execute multiple cmds
on the same line.

{ cmd1 ; cmd2 ; } Execute commands as a group in the current
shell.

(cmd1 ; cmd2) Execute commands as a group in a subshell.

cmd1 | cmd2 Pipe; use output from cmd1 as input to cmd2.

cmd1 `cmd2` Command substitution; use cmd2 output as
arguments to cmd1.

cmd1 $(cmd2) POSIX shell command substitution; nesting is
allowed.

cmd $((expression)) POSIX shell arithmetic substitution. Use the
result of expression as argument to cmd.

cmd1 && cmd2 AND; execute cmd1 and then (if cmd1 suc-
ceeds) cmd2. This is a “short circuit” opera-
tion: cmd2 is never executed if cmd1 fails.

cmd1 || cmd2 OR; execute either cmd1 or (if cmd1 fails)
cmd2. This is a “short circuit” operation;
cmd2 is never executed if cmd1 succeeds.

! cmd NOT; execute cmd, and produce a zero exit
status if cmd exits with a nonzero status.
Otherwise, produce a nonzero status when
cmd exits with a zero status.

12 | The Bash Shell

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

Examples
Format in the background
$ nroff file > file.txt &

Execute sequentially
$ cd; ls

All output is redirected
$ (date; who; pwd) > logfile

Sort file, page output, then print
$ sort file | pr -3 | lp

Edit files found by grep
$ vi `grep -l ifdef *.cpp`

Specify a list of files to search
$ egrep '(yes|no)' `cat list`

POSIX version of previous
$ egrep '(yes|no)' $(cat list)

Faster; not in POSIX
$ egrep '(yes|no)' $(< list)

Print file if it contains the pattern
$ grep XX file && lp file

Otherwise, echo an error message
$ grep XX file || echo "XX not found"

Redirection Forms
File descriptor Name Common abbreviation Typical default

0 Standard input stdin Keyboard

1 Standard output stdout Screen

2 Standard error stderr Screen

The usual input source or output destination can be changed,
as seen in the following sections.

Syntax | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Simple redirection
cmd > file

Send output of cmd to file (overwrite).

cmd >> file
Send output of cmd to file (append).

cmd < file
Take input for cmd from file.

cmd << text
The contents of the shell script up to a line identical to
text become the standard input for cmd (text can be stored
in a shell variable). This command form is sometimes
called a here document. Input is typed at the keyboard or
in the shell program. Commands that typically use this
syntax include cat, ex, and sed. (If <<- is used, leading tabs
are stripped from the contents of the here document, and
the tabs are ignored when comparing input with the end-
of-input text marker.) If any part of text is quoted, the
input is passed through verbatim. Otherwise, the contents
are processed for variable, command, and arithmetic
substitutions.

cmd <<< word
Supply text of word, with trailing newline, as input to
cmd. (This is known as a here string, from the free version
of the rc shell.)

cmd <> file
Open file for reading and writing on the standard input.
The contents are not destroyed.*

cmd >| file
Send output of cmd to file (overwrite), even if the shell’s
noclobber option is set.

* With <, the file is opened read-only, and writes on the file descriptor will
fail. With <>, the file is opened read-write; it is up to the application to
actually take advantage of this.

14 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Redirection using file descriptors
cmd >&n

Send cmd output to file descriptor n.

cmd m>&n
Same as previous, except that output that would normally
go to file descriptor m is sent to file descriptor n instead.

cmd >&-
Close standard output.

cmd <&n
Take input for cmd from file descriptor n.

cmd m<&n
Same as previous, except that input that would normally
come from file descriptor m comes from file descriptor n
instead.

cmd <&-
Close standard input.

cmd <&n-
Move file descriptor n to standard input by duplicating it
and then closing the original.

cmd >&n-
Move file descriptor n to standard output by duplicating
it and then closing the original.

Multiple redirection
cmd 2>file

Send standard error to file; standard output remains the
same (e.g., the screen).

cmd > file 2>&1
Send both standard output and standard error to file.

cmd >& file
Same as previous.

cmd &> file
Same as previous. Preferred form.

Syntax | 15

www.it-ebooks.info

http://www.it-ebooks.info/

cmd &>> file
Append both standard output and standard error to file.

cmd > f1 2> f2
Send standard output to file f1 and standard error to file f2.

cmd | tee files
Send output of cmd to standard output (usually the ter-
minal) and to files. See tee(1).

cmd 2>&1 | tee files
Send standard output and error output of cmd through a
pipe to tee to standard output (usually the terminal) and
to files.

cmd |& tee files
Same as previous.

Bash allows multidigit file descriptor numbers without any
special syntax. Most other shells either require a special syntax
or do not offer the feature at all.

Bash also allows {variablename} instead of a file descriptor
number in redirections. In such a case, the shell uses a file de-
scriptor number greater than nine, and assigns the value to the
named shell variable.

NOTE
No space is allowed between file descriptors and a redi-
rection symbol; spacing is optional in the other cases.

Process substitution
cmd <(command)

Run command with its output connected to a named pipe
or an open file in /dev/fd, and place the file’s name in the
argument list of cmd.

cmd >(command)
Run command with its input connected to a named pipe
or an open file in /dev/fd, and place the file’s name in the
argument list of cmd.

16 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Process substitution is available on systems that support either
named pipes (FIFOs) or accessing open files via filenames
in /dev/fd. (This is true of all modern Unix systems.) It pro-
vides a way to create non-linear pipelines.

Special filenames
Bash recognizes several special filenames in redirections and
interprets them internally, even if you have such a file on your
system:

/dev/stdin
A duplicate of file descriptor zero.

/dev/stdout
A duplicate of file descriptor one.

/dev/stderr
A duplicate of file descriptor two.

/dev/fd/n
A duplicate of file descriptor n.

/dev/tcp/host/port
Bash opens a TCP connection to host, which is either a
hostname or IP address, on port port and uses the file de-
scriptor in the redirection.

/dev/udp/host/port
Bash opens a UDP connection to host, which is either a
hostname or IP address, on port port and uses the file de-
scriptor in the redirection.

Examples
$ cat part1 > book Copy part1 to book
$ cat part2 part3 >> book Append part2 and part3k
$ mail tim < report Send report to the big boss
$ sed 's/^/XX /g' << END_ARCHIVE Here document is sed's input
> This is often how a shell archive is "wrapped",
> bundling text for distribution. You would normally
> run sed from a shell program, not from the command line.
> END_ARCHIVE
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from the command line.

Syntax | 17

www.it-ebooks.info

http://www.it-ebooks.info/

To redirect standard output to standard error:

$ echo "Usage error: see administrator" 1>&2

The following command sends output (files found) to
filelist, and error messages (inaccessible files) to no_access:

$ find / -print > filelist 2>no_access

The following demonstrates how Bash assigns file descriptor
numbers to named variables:

$ echo foo {foofd}> /tmp/xyzzy Save file descriptor number
foo
$ echo $foofd
11

The following sorts two files and presents the differences be-
tween the results using the diff command:

$ diff <(sort file1) <(sort file2)

Functions
A shell function is a grouping of commands within a shell script.
Shell functions let you modularize your program by dividing it
up into separate tasks. This way, the code for each task is not
repeated every time you need to perform the task. The POSIX
shell syntax for defining a function follows the Bourne shell:

name () {
 function body's code comes here
} [redirections]

Functions are invoked just as are regular shell built-in com-
mands or external commands. The command-line parameters
$1, $2, and so on receive the function’s arguments, temporarily
hiding the global values of $1, etc. For example:

fatal --- print an error message and die:

fatal () {
 # Messages go to standard error.
 echo "$0: fatal error:" "$@" >&2
 exit 1
}

18 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

…
if [$# = 0] # not enough arguments
then
 fatal not enough arguments
fi

A function may use the return command to return an exit value
to the calling shell program. Be careful not to use exit from
within a function unless you really wish to terminate the entire
program.

Per the POSIX standard, any redirections given with the func-
tion definition are evaluated when the function executes, not
when it is defined.

Bash allows you to define functions using a slightly different
syntax, as follows:

function name [()] { body } [redirections]

When using the function keyword, the parentheses following
the function name are optional.

Functions share traps with the “parent” shell as described in
the following table.

Trap type Shared/not shared

Signal-based traps Shared until the function redefines the trap

DEBUG Not shared unless function tracing is enabled
(set -T or set -o functrace)

ERR Not shared unless error tracing is enabled (set
-E or set -o errtrace)

EXIT Shared until the function redefines the trap

RETURN Not shared unless function tracing is enabled
(set -T or set -o functrace)

Functions may have local variables, and they may be recursive.
Unlike the Korn shell, the syntax used to define a function is
irrelevant.

Functions | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Function names do not have to be valid shell identifiers (just
as external commands do not have to have names that are valid
shell identifiers).

Variables
This section describes the following:

• Variable assignment

• Variable substitution

• Built-in shell variables

• Other shell variables

• Arrays

• Special prompt strings

Variable Assignment
Variable names consist of any number of letters, digits, or
underscores. Upper- and lowercase letters are distinct, and
names may not start with a digit. Variables are assigned values
using the = operator. There may not be any whitespace between
the variable name and the value. You can make multiple
assignments on the same line by separating each one with
whitespace:

firstname=Arnold lastname=Robbins numkids=4 numpets=1

By convention, names for variables used or set by the shell have
all uppercase letters; however, you can use uppercase names
in your scripts if you use a name that isn’t special to the shell.

By default, the shell treats variable values as strings, even if the
value of the string is all digits. However, when a value is
assigned to an integer variable (created via declare -i), Bash
evaluates the righthand side of the assignment as an expression
(see the section “Arithmetic Expressions” on page 36). For
example:

20 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

$ i=5+3 ; echo $i
5+3
$ declare -i jj ; jj=5+3 ; echo $jj
8

The += operator allows you to add or append the righthand
side of the assignment to an existing value. Integer variables
treat the righthand side as an expression, which is evaluated
and added to the value. Arrays add the new elements to the
array (see the section “Arrays” on page 33). For example:

$ name=Arnold
$ name+=" Robbins" ; echo $name String variable
Arnold Robbins
$ declare -i jj ; jj=3+5 ; echo $jj Integer variable
8
$ jj+=2+4 ; echo $jj
14
$ pets=(blacky rusty) Array variable
$ echo ${pets[*]}
blacky rusty
$ pets+=(raincloud sophie)
$ echo ${pets[*]}
blacky rusty raincloud sophie

Variable Substitution
No spaces should be used in the following expressions. The
colon (:) is optional; if it’s included, var must be nonnull as
well as set.

var=value … Set each variable var to a value.

${var} Use value of var; braces are optional if var is
separated from the following text. They are re-
quired for array variables.

${var:-value} Use var if set; otherwise, use value.

${var:=value} Use var if set; otherwise, use value and assign
value to var.

${var:?value} Use var if set; otherwise, print value and exit (if
not interactive). If value isn’t supplied, print
the phrase parameter null or not set.

${var:+value} Use value if var is set; otherwise, use nothing.

Variables | 21

www.it-ebooks.info

http://www.it-ebooks.info/

${#var} Use the length of var.

${#*} Use the number of positional parameters.

${#@} Same as previous.

${var#pattern} Use value of var after removing text matching
pattern from the left. Remove the shortest
matching piece.

${var##pattern} Same as #pattern, but remove the longest
matching piece.

${var%pattern} Use value of var after removing text matching
pattern from the right. Remove the shortest
matching piece.

${var%%pattern} Same as %pattern, but remove the longest
matching piece.

${var^pattern} Convert the case of var to uppercase. The pat-
tern is evaluated as for filename matching. If
the first letter of var matches the pattern, it is
converted to uppercase. var can be * or @, in
which case the positional parameters are modi-
fied. var can also be an array subscripted by *
or @, in which case the substitution is applied
to all the elements of the array.

${var^^pattern} Same as ^pattern, but apply the match to every
letter in the string.

${var,pattern} Same as ^pattern, but convert matching char-
acters to lower case. Applies only to the first
character in the string.

${var,,pattern} Same as ,pattern, but apply the match to every
letter in the string.

${!prefix*},
${!prefix@}

List of variables whose names begin with
prefix.

${var:pos},
${var:pos:len}

Starting at position pos (0-based) in variable
var, extract len characters, or extract rest of
string if no len. pos and len may be arithmetic
expressions.

When var is * or @, the expansion is performed
upon the positional parameters. If pos is zero,
then $0 is included in the resulting list. Simi-
larly, var can be an array indexed by * or @.

22 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

${var/pat/repl} Use value of var, with first match of pat re-
placed with repl.

${var/pat} Use value of var, with first match of pat
deleted.

${var//pat/repl} Use value of var, with every match of pat
replaced with repl.

${var/#pat/repl} Use value of var, with match of pat replaced
with repl. Match must occur at beginning of the
value.

${var/%pat/repl} Use value of var, with match of pat replaced
with repl. Match must occur at end of the value.

${!var} Use value of var as name of variable whose val-
ue should be used (indirect reference).

Bash provides a special syntax that lets one variable indirectly
reference another:

$ greet="hello, world" Create initial variable
$ friendly_message=greet Aliasing variable
$ echo ${!friendly_message} Use the alias
hello, world

Examples
$ u=up d=down blank= Assign values to 3 variables
 (last is null)
$ echo ${u}root Braces are needed here
uproot
$ echo ${u-$d} Display value of u or d; u is set,
 so print it
up
$ echo ${tmp-`date`} If tmp not set, execute date
Mon Apr 12 14:33:16 EDT 2010
$ echo ${blank="no data"} blank is set, so it is printed (blank line)
$ echo ${blank:="no data"} blank is set but null, print string
no data
$ echo $blank blank now has a new value
no data

Take the current directory name and remove the longest
character string ending with /, which removes the
leading pathname and leaves the tail
$ tail=${PWD##*/}

Variables | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Use a famous word
$ word=supercalifragilisticexpialidocious

Modify the case of the first character
$ echo ${word^[r-t]}
Supercalifragilisticexpialidocious

Modify the case of all matching characters
$ echo ${word^^[r-t]}
SupeRcalifRagiliSTicexpialidociouS

Built-in Shell Variables
Built-in variables are automatically set by the shell and are typ-
ically used inside shell scripts. Built-in variables can make use
of the variable substitution patterns shown previously. Note
that the $ is not actually part of the variable name, although
the variable is always referenced this way. The following are
available in any Bourne-compatible shell:

$# Number of command-line arguments.

$- Options currently in effect (supplied on command line or to
set). The shell sets some options automatically.

$? Exit value of last executed command.

$$ Process number of the shell.

$! Process number of last background command.

$0 First word; that is, the command name. This will have the full
pathname if it was found via a PATH search.

$n Individual arguments on command line (positional parame-
ters). The Bourne shell allows only nine parameters to be ref-
erenced directly (n = 1–9); Bash allows n to be greater than 9
if specified as ${n}.

$*, $@ All arguments on command line ($1 $2 …).

"$*" All arguments on command line as one string ("$1 $2…"). The
values are separated by the first character in $IFS.

"$@" All arguments on command line, individually quoted ("$1"
"$2" …).

24 | The Bash Shell

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

Bash automatically sets the following additional variables:

$_ Temporary variable; initialized to path-
name of script or program being executed.
Later, stores the last argument of previous
command. Also stores name of matching
MAIL file during mail checks.

BASH The full pathname used to invoke this in-
stance of Bash.

BASHOPTS A read-only, colon-separated list of shell op-
tions that are currently enabled. Each item
in the list is a valid option for shopt -s. If
this variable exists in the environment when
Bash starts up, it sets the indicated options
before executing any startup files.

BASHPID The process ID of the current Bash process.
In some cases, this can differ from $$.

BASH_ALIASES Associative array variable. Each element
holds an alias defined with the alias com-
mand. Adding an element to this array
creates a new alias; removing an element re-
moves the corresponding alias.

BASH_ARGC Array variable. Each element holds the
number of arguments for the corresponding
function or dot-script invocation. Set only
in extended debug mode, with shopt -s
extdebug. Cannot be unset.

BASH_ARGV An array variable similar to BASH_ARGC. Each
element is one of the arguments passed to a
function or dot-script. It functions as a
stack, with values being pushed on at each
call. Thus, the last element is the last argu-
ment to the most recent function or script
invocation. Set only in extended debug
mode, with shopt -s extdebug. Cannot be
unset.

BASH_CMDS Associative array variable. Each element re-
fers to a command in the internal hash table
maintained by the hash command. The in-
dex is the command name and the value is
the full path to the command. Adding an

Variables | 25

www.it-ebooks.info

http://www.it-ebooks.info/

element to this array adds a command to the
hash table; removing an element removes
the corresponding entry.

BASH_COMMAND The command currently executing or about
to be executed. Inside a trap handler, it is
the command running when the trap was
invoked.

BASH_EXECUTION_STRING The string argument passed to the -c
option.

BASH_LINENO Array variable, corresponding to
BASH_SOURCE and FUNCNAME. For any given
function number i (starting at zero),
${FUNCNAME[i]} was invoked in file
${BASH_SOURCE[i]} on line
${BASH_LINENO[i]}. The information is stor-
ed with the most recent function invocation
first. Cannot be unset.

BASH_REMATCH Array variable, assigned by the =~ operator
of the [[ ]] construct. Index zero is the text
that matched the entire pattern. The other
indices are the text matched by parenthe-
sized subexpressions. This variable is
read-only.

BASH_SOURCE Array variable, containing source filenames.
Each element corresponds to those in
FUNCNAME and BASH_LINENO. Cannot be unset.

BASH_SUBSHELL This variable is incremented by one each
time a subshell or subshell environment is
created.

BASH_VERSINFO[0] The major version number, or release, of
Bash.

BASH_VERSINFO[1] The minor version number, or version, of
Bash.

BASH_VERSINFO[2] The patch level.

BASH_VERSINFO[3] The build version.

BASH_VERSINFO[4] The release status.

BASH_VERSINFO[5] The machine type; same value as in
$MACHTYPE.

26 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

BASH_VERSION A string describing the version of Bash.

COMP_CWORD For programmable completion. Index into
COMP_WORDS, indicating the current cursor
position.

COMP_KEY For programmable completion. The key, or
final key in a sequence, that caused the
invocation of the current completion
function.

COMP_LINE For programmable completion. The current
command line.

COMP_POINT For programmable completion. The posi-
tion of the cursor as a character index in
$COMP_LINE.

COMP_TYPE For programmable completion. A character
describing the type of programmable
completion. The character is one of Tab for
normal completion, ? for a completions list
after two Tabs, ! for the list of alternatives
on partial word completion, @ for comple-
tions if the word is modified, or % for menu
completion.

COMP_WORDBREAKS For programmable completion. The char-
acters that the readline library treats as word
separators when doing word completion.

COMP_WORDS For programmable completion. Array vari-
able containing the individual words on the
command line.

COPROC Array variable that holds the file descriptors
used for communicating with an unnamed
coprocess. For more information, see “Cop-
rocesses” on page 53.

DIRSTACK Array variable, containing the contents of
the directory stack as displayed by dirs.
Changing existing elements modifies the
stack, but only pushd and popd can add or
remove elements from the stack.

EUID Read-only variable with the numeric effec-
tive UID of the current user.

Variables | 27

www.it-ebooks.info

http://www.it-ebooks.info/

FUNCNAME Array variable, containing function names.
Each element corresponds to those in
BASH_SOURCE and BASH_LINENO.

GROUPS Array variable, containing the list of numer-
ic group IDs in which the current user is a
member.

HISTCMD The history number of the current
command.

HOSTNAME The name of the current host.

HOSTTYPE A string that describes the host system.

LINENO Current line number within the script or
function.

MACHTYPE A string that describes the host system in the
GNU cpu-company-system format.

MAPFILE Default array for the mapfile and
readarray commands. See the entry for map-
file on page 86 for more information.

OLDPWD Previous working directory (set by cd).

OPTARG Value of argument to last option processed
by getopts.

OPTIND Numerical index of OPTARG.

OSTYPE A string that describes the operating system.

PIPESTATUS Array variable, containing the exit statuses
of the commands in the most recent fore-
ground pipeline.

PPID Process number of this shell’s parent.

PWD Current working directory (set by cd).

RANDOM[=n] Generate a new random number with each
reference; start with integer n, if given.

READLINE_LINE For use with bind -x. The contents of the
editing buffer are available in this variable.

READLINE_POINT For use with bind -x. The index in
$READLINE_LINE of the insertion point.

REPLY Default reply; used by select and read.

28 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

SECONDS[=n] Number of seconds since the shell was star-
ted, or, if n is given, number of seconds since
the assignment + n.

SHELLOPTS A read-only, colon-separated list of shell op-
tions (for set -o). If set in the environment
at startup, Bash enables each option present
in the list before reading any startup files.

SHLVL Incremented by one every time a new Bash
starts up.

UID Read-only variable with the numeric real
UID of the current user.

Many of these variables provide support for either the Bash
Debugger (see http://bashdb.sourceforge.net) or for
programmable completion (see the section “Programmable
Completion” on page 41).

Other Shell Variables
The following variables are not automatically set by the shell,
although many of them can influence the shell’s behavior. You
typically use them in your .bash_profile or .profile file, where
you can define them to suit your needs. Variables can be as-
signed values by issuing commands of the form:

variable=value

This list includes the type of value expected when defining
these variables:

BASH_ENV If set at startup, names a file to be
processed for initialization commands.
The value undergoes parameter expan-
sion, command substitution, and arith-
metic expansion before being interpreted
as a filename.

BASH_XTRACEFD=n File descriptor to which Bash writes trace
output (from set -x).

Variables | 29

www.it-ebooks.info

http://bashdb.sourceforge.net
http://www.it-ebooks.info/

CDPATH=dirs Directories searched by cd; allows short-
cuts in changing directories; unset by
default.

COLUMNS=n Screen’s column width; used in line edit
modes and select lists.

COMPREPLY=(words …) Array variable from which Bash reads the
possible completions generated by a com-
pletion function.

EMACS If the value starts with t, Bash assumes it’s
running in an Emacs buffer and disables
line editing.

ENV=file Name of script that is executed at startup
in POSIX mode or when Bash is invoked
as /bin/sh; useful for storing alias and
function definitions. For example, ENV=
$HOME/.shellrc.

FCEDIT=file Editor used by fc command. The default
is /bin/ed when Bash is in POSIX mode.
Otherwise, the default is $EDITOR if set, vi
if unset.

FIGNORE=patlist Colon-separated list of patterns describing
the set of filenames to ignore when doing
filename completion.

GLOBIGNORE=patlist Colon-separated list of patterns describing
the set of filenames to ignore during pat-
tern matching.

HISTCONTROL=list Colon-separated list of values controlling
how commands are saved in the history
file. Recognized values are ignoredups,
ignorespace, ignoreboth, and erasedups.

HISTFILE=file File in which to store command history.

HISTFILESIZE=n Number of lines to be kept in the history
file. This may be different from the number
of commands.

HISTIGNORE=list A colon-separated list of patterns that must
match the entire command line. Matching
lines are not saved in the history file. An
unescaped & in a pattern matches the pre-
vious history line.

30 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

HISTSIZE=n Number of history commands to be kept
in the history file.

HISTTIMEFORMAT=string A format string for strftime(3) to use for
printing timestamps along with com-
mands from the history command. If set
(even if null), Bash saves timestamps in the
history file along with the commands.

HOME=dir Home directory; set by login
(from /etc/passwd file).

HOSTFILE=file Name of a file in the same format
as /etc/hosts that Bash should use to find
hostnames for hostname completion.

IFS='chars' Input field separators; default is space,
Tab, and newline.

IGNOREEOF=n Numeric value indicating how many
successive EOF characters must be typed
before Bash exits. If null or nonnumeric
value, default is 10.

INPUTRC=file Initialization file for the readline library.
This overrides the default value of
~/.inputrc.

LANG=locale Default value for locale; used if no LC_*
variables are set.

LC_ALL=locale Current locale; overrides LANG and the
other LC_* variables.

LC_COLLATE=locale Locale to use for character collation (sort-
ing order).

LC_CTYPE=locale Locale to use for character class functions.
(See the section “Filename Metacharact-
ers” on page 7.)

LC_MESSAGES=locale Locale to use for translating $"…" strings.

LC_NUMERIC=locale Locale to use for the decimal-point
character.

LC_TIME=locale Locale to use for date and time formats.

LINES=n Screen’s height; used for select lists.

MAIL=file Default file to check for incoming mail; set
by login.

Variables | 31

www.it-ebooks.info

http://www.it-ebooks.info/

MAILCHECK=n Number of seconds between mail checks;
default is 600 (10 minutes).

MAILPATH=files One or more files, delimited by a colon, to
check for incoming mail. Along with each
file, you may supply an optional message
that the shell prints when the file increases
in size. Messages are separated from the
filename by a ? character, and the default
message is You have mail in $_. $_ is
replaced with the name of the file. For
example, you might have MAIL
PATH="$MAIL?Candygram!:/etc/motd?New
Login Message"

OPTERR=n When set to 1 (the default value), Bash
prints error messages from the built-in
getopts command.

PATH=dirlist One or more pathnames, delimited by co-
lons, in which to search for commands to
execute. The default for many systems
is /bin:/usr/bin. On Solaris, the default
is /usr/bin:. However, the standard start-
up scripts change it to /usr/bin:/usr/
ucb:/etc:.

POSIXLY_CORRECT=string When set at startup or while running, Bash
enters POSIX mode, disabling behavior
and modifying features that conflict with
the POSIX standard.

PROMPT_COMMAND=command If set, Bash executes this command each
time before printing the primary prompt.

PROMPT_DIRTRIM=n Indicates how many trailing directory
components to retain for the \w or \W spe-
cial prompt strings (see the section “Spe-
cial Prompt Strings” on page 35). Elided
components are replaced with an ellipsis.

PS1=string Primary prompt string; default is $.

PS2=string Secondary prompt (used in multiline com-
mands); default is >.

PS3=string Prompt string in select loops; default is #?.

32 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

PS4=string Prompt string for execution trace (bash -x
or set -x); default is +.

SHELL=file Name of user’s default shell
(e.g., /bin/sh). Bash sets this if it’s not in
the environment at startup.

TERM=string Terminal type.

TIMEFORMAT=string A format string for the output from the
time keyword.

TMOUT=n If no command is typed after n seconds,
exit the shell. Also affects the read com-
mand and the select loop.

TMPDIR=directory Place temporary files created and used by
the shell in directory.

auto_resume=list Enables the use of simple strings for re-
suming stopped jobs. With a value of
exact, the string must match a command
name exactly. With a value of substring, it
can match a substring of the command
name.

histchars=chars Two or three characters that control Bash’s
csh-style history expansion. The first char-
acter signals a history event, the second is
the “quick substitution” character, and the
third indicates the start of a comment. The
default value is !^#. See the section “C-
Shell–Style History” on page 39.

Arrays
Bash provides two kinds of arrays: indexed arrays, where the
indices are integers zero and above, and associative arrays,
where the indices are strings.

Indexed arrays
Bash supports one-dimensional arrays. The first element is
numbered zero. Bash has no limit on the number of elements.
Arrays are initialized with a special form of assignment:

message=(hi there how are you today)

Variables | 33

www.it-ebooks.info

http://www.it-ebooks.info/

where the specified values become elements of the array. Indi-
vidual elements may also be assigned to:

message[0]=hi This is the hard way
message[1]=there
message[2]=how
message[3]=are
message[4]=you
message[5]=today

Declaring indexed arrays is not required. Any valid reference
to a subscripted variable can create an array.

When referencing arrays, use the ${ … } syntax. This isn’t
needed when referencing arrays inside (()) (the form of let
that does automatic quoting). Note that [and] are typed lit-
erally (i.e., they don’t stand for optional syntax).

${name[i]} Use element i of array name. i can be any arithmetic
expression as described under let.

${name} Use element 0 of array name.

${name[*]} Use all elements of array name.

${name[@]} Same as previous.

${#name[*]} Use the number of elements in array name.

${#name[@]} Same as previous.

Associative arrays
Bash provides associative arrays, where the indices are strings
instead of numbers (as in awk). In this case, [and] act like
double quotes. Associative arrays must be declared by using
the -A option to the declare, local, and readonly commands.
A special syntax allows assigning to multiple elements at once:

data=([joe]=30 [mary]=25) Associative array assignment
message=([0]=hi [2]=there) Indexed array assignment works, too

The values would be retrieved as ${data[joe]} and
${data[mary]}.

The special expansions for retrieving all the indices of an as-
sociative array work just as they do for indexed arrays.

34 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Special Prompt Strings
Bash processes the values of PS1, PS2, and PS4 for the following
special escape sequences:

\a An ASCII BEL character (octal 07).

\A The current time in 24-hour HH:MM format.

\d The date in “weekday month day” format.

\D{format} The date as specified by the strftime(3) format format.
The braces are required.

\e An ASCII Escape character (octal 033).

\h The hostname, up to the first period.

\H The full hostname.

\j The current number of jobs.

\l The basename of the shell’s terminal device.

\n A newline character.

\r A carriage return character.

\s The name of the shell (basename of $0).

\t The current time in 24-hour HH:MM:SS format.

\T The current time in 12-hour HH:MM:SS format.

\u The current user’s username.

\v The version of Bash.

\V The release (version plus patchlevel) of Bash.

\w The current directory, with $HOME abbreviated as ~. See
also the description of the PROMPT_DIRTRIM variable.

\W The basename of the current directory, with $HOME ab-
breviated as ~. See also the description of the
PROMPT_DIRTRIM variable.

\! The history number of this command (stored in the
history).

\# The command number of this command (count of com-
mands executed by the current shell).

\$ If the effective UID is 0, a #; otherwise, a $.

\@ The current time in 12-hour a.m./p.m. format.

Variables | 35

www.it-ebooks.info

http://www.it-ebooks.info/

\nnn The character represented by octal value nnn.

\\ A literal backslash.

\[Start a sequence of nonprinting characters, such as for
highlighting or changing colors on a terminal.

\] End a sequence of nonprinting characters.

The PS1, PS2, and PS4 variables undergo substitution for escape
sequences, variable substitution, command substitution, and
arithmetic substitution. The escape sequences are processed
first, and then, if the promptvars shell option is enabled via the
shopt command (the default), the substitutions are performed.

Arithmetic Expressions
The let command performs arithmetic. Bash is restricted to
integer arithmetic. The shell provides a way to substitute arith-
metic values (for use as command arguments or in variables);
base conversion is also possible:

$((expr)) Use the value of the enclosed arithmetic expression.

B#n Interpret integer n in numeric base B. For example,
8#100 specifies the octal equivalent of decimal 64.

Operators
The shell uses arithmetic operators from the C programming
language, in decreasing order of precedence.

Operator Description

++ -- Auto-increment and auto-decrement, both prefix and
postfix

+ - Unary plus and minus

! ~ Logical negation and binary inversion (one’s
complement)

** Exponentiationa

* / % Multiplication, division, modulus (remainder)

36 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Operator Description

+ - Addition, subtraction

<< >> Bitwise left shift, bitwise right shift

< <= > >= Less than, less than or equal to, greater than, greater than
or equal to

== != Equality, inequality (both evaluated left to right)

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND (short circuit)

|| Logical OR (short circuit)

?: Inline conditional evaluation

= += -=

*= /= %=

<<= >>= Assignment

&= ^= |=

, Sequential expression evaluation

a The ** operator is right-associative. Prior to version 3.1, it was left-
associative.

Examples
let "count=0" "i = i + 1" Assign values to i and count
let "num % 2" Exit successfully if num is even
((percent >= 0 && \
 percent <= 100)) Test the range of a value

See the entry for let on page 85 for more information and
examples.

Command History
The shell lets you display or modify previous commands. Using
the history command, you can manage the list of commands
kept in the shell’s history; see history on page 81 for more

Command History | 37

www.it-ebooks.info

http://www.it-ebooks.info/

information. This section focuses on the facilities for editing
stored commands. Commands in the history list can be modi-
fied using:

• Line-edit mode

• The fc command

• C-shell–style history

Line-Edit Mode
Line-edit mode emulates many features of the vi and Emacs
editors. The history list is treated like a file. When the editor is
invoked, you type editing keystrokes to move to the command
line you want to execute. You can also change the line before
executing it. When you’re ready to issue the command, press
the Enter key.

Emacs editing mode is the default. To control command-line
editing, you must use either set -o vi or set -o emacs; Bash
does not use variables to specify the editor.

Note that the vi editing mode starts in input mode; to type a
vi command, press the Escape key first.

Common editing keystrokes

vi Emacs Result

k CTRL-p Get previous command.

j CTRL-n Get next command.

/string CTRL-r string Get previous command containing string.

h CTRL-b Move back one character.

l CTRL-f Move forward one character.

b ESC-b Move back one word.

w ESC-f Move forward one word.

X DEL Delete previous character.

x CTRL-d Delete character under cursor.

dw ESC-d Delete word forward.

38 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

vi Emacs Result

db ESC-h Delete word backward.

xp CTRL-t Transpose two characters.

Both editing modes allow you to use the cursor keys to move
around within the saved history.

The fc Command
fc stands for either “find command” or “fix command,” be-
cause it does both jobs. Use fc -l to list history commands and
fc -e to edit them. See the entry for fc on page 76 for more
information.

Examples
$ history List the last 16 commands
$ fc -l 20 30 List commands 20 through 30
$ fc -l -5 List the last 5 commands
$ fc -l cat List all commands since the last cat command
$ fc -l 50 List all commands since command 50
$ fc -ln 5 > doit Save command 5 to file doit
$ fc -e vi 5 20 Edit commands 5 through 20 using vi
$ fc -e emacs Edit previous command using emacs

Interactive line-editing is easier to use than fc, because you can
move up and down in the saved command history using your
favorite editor commands (as long as your favorite editor is
either vi or Emacs!). You may also use the Up and Down arrow
keys to traverse the command history.

C-Shell–Style History
Besides the interactive editing features and POSIX fc com-
mand, Bash supports a command-line editing mode similar to
that of the Berkeley C shell (csh). It can be disabled using set
+H. Many users prefer the interactive editing features, but for
those whose “finger habits” are still those of csh, this feature
comes in handy.

Command History | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Event designators
Event designators mark a command-line word as a history
substitution.

Command Description

! Begin a history substitution.

!! Previous command.

!n Command number n in history list.

!-n n th command back from current command.

!string Most recent command that starts with string.

!?string[?] Most recent command that contains string.

Current command line up to this point (fairly useless).

^old^new^ Quick substitution; change string old to new in previous
command, and execute modified command.

Word substitution
Word specifiers allow you to retrieve individual words from
previous command lines. They follow an initial event specifier,
separated by a colon. The colon is optional if followed by any
of the following: ^, $, *, -, or %.

Specifier Description

:0 Command name

:n Argument number n

^ First argument

$ Last argument

% Argument matched by a !?string? search

:n-m Arguments n through m

-m Words 0 through m; same as :0-m

:n- Arguments n through next-to-last

:n* Arguments n through last; same as n-$

* All arguments; same as ^-$ or 1-$

40 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

History modifiers
There are several ways to modify command and word substi-
tutions. The printing, substitution, and quoting modifiers are
shown in the following table.

Modifier Description

:p Display command, but don’t execute.

:s/old/new Substitute string new for old, first instance only.

:gs/old/new Substitute string new for old, all instances.

:as/old/new Same as :gs.

:Gs/old/new Like :gs, but apply the substitution to all the words in
the command line.

:& Repeat previous substitution (:s or ^ command), first
instance only.

:g& Repeat previous substitution, all instances.

:q Quote a word list.

:x Quote separate words.

The truncation modifiers are shown in the following table.

Modifier Description

:r Extract the first available pathname root (the portion before
the last period).

:e Extract the first available pathname extension (the portion
after the last period).

:h Extract the first available pathname header (the portion be-
fore the last slash).

:t Extract the first available pathname tail (the portion after the
last slash).

Programmable Completion
Bash and the readline library provide completion facilities,
whereby you can type part of a command name, hit the Tab
key, and Bash will fill in part or all of the rest of the command

Programmable Completion | 41

www.it-ebooks.info

http://www.it-ebooks.info/

or filename. Programmable completion lets you, as a shell pro-
grammer, write code to customize the list of possible comple-
tions that Bash will present for a particular partially entered
word. This is accomplished through the combination of several
facilities:

• The complete command allows you to provide a comple-
tion specification, or compspec, for individual commands.
You specify, via various options, how to tailor the list of
possible completions for the particular command. This is
simple, but adequate for many needs. (See the entry for
complete on page 63.)

• For more flexibility, you can use complete -F funcname
command. This tells Bash to call funcname to provide the list
of completions for command. You write the funcname
function.

• Within the code for a -F function, the COMP* shell vari-
ables provide information about the current command
line. COMPREPLY is an array into which the function places
the final list of completion results.

• Also within the code for a -F function, you may use the
compgen command to generate a list of results, such as
“usernames that begin with a” or “all set variables.” The
intent is that such results would be used with an array
assignment:

…
COMPREPLY=($(compgen options arguments))
…

Compspecs may be associated with either a full pathname for
a command or, more commonly, an unadorned command
name (/usr/bin/man versus plain man). Completions are at-
tempted in the following order, based on the options provided
to the complete command:

1. If completion is attempted on an empty input line, Bash
applies the compspec given with complete -E. Other-
wise, it proceeds to the next step.

42 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

2. Bash first identifies the command. If a pathname is used,
Bash looks to see if a compspec exists for the full path-
name. Otherwise, it sets the command name to the last
component of the pathname, and searches for a comp-
spec for the command name.

3. If a compspec exists, Bash uses it. If not, Bash uses the
“default” compspec given with complete -D. If there is
none, then Bash falls back to the default built-in
completions.

4. Bash performs the action indicated by the compspec to
generate a list of possible matches. Of this list, only those
that have the word being completed as a prefix are used
for the list of possible completions. For the -d and -f
options, the variable FIGNORE is used to filter out unde-
sirable matches.

5. Bash generates filenames as specified by the -G option.
GLOBIGNORE is not used to filter the results, but FIGNORE is.

6. Bash processes the argument string provided to -W. The
string is split using the characters in $IFS. The resulting
list provides the candidates for completion. This is often
used to provide a list of options that a command accepts.

7. Bash runs functions and commands as specified by the
-F and -C options. For both, Bash sets COMP_LINE and
COMP_POINT as described in the section “Built-in Shell
Variables” on page 24. For a shell function, COMP_WORDS
and COMP_CWORD are also set.

Also, for both functions and commands, $1 is the name
of the command whose arguments are being completed,
$2 is the word being completed, and $3 is the word in
front of the word being completed. Bash does not filter
the results of the command or function:

a. Functions named with -F are run first. The function
should set the COMPREPLY array to the list of possible
completions. Bash retrieves the list from there.

b. Commands provided with -C are run next, in an
environment equivalent to command substitution.

Programmable Completion | 43

www.it-ebooks.info

http://www.it-ebooks.info/

The command should print the list of possible com-
pletions, one per line. An embedded newline should
be escaped with a backslash.

8. Once the list is generated, Bash filters the results ac-
cording to the -X option. The argument to -X is a pattern
specifying files to exclude. By prefixing the pattern with
a !, the sense is reversed, and the pattern instead specifies
that only matching files should be retained in the list.

An & in the pattern is replaced with the text of the word
being completed. Use \& to produce a literal &.

9. Finally, Bash prepends or appends any prefixes or suf-
fixes supplied with the -P or -S options.

10. In the case that no matches were generated, if
-o dirnames was used, Bash attempts directory name
completion.

11. On the other hand, if -o plusdirs was provided, Bash
adds the result of directory completion to the previously
generated list.

12. Normally, when a compspec is provided, Bash’s default
completions are not attempted, nor are the readline li-
brary’s default filename completions:

a. If the compspec produces no results and
-o bashdefault was provided, then Bash attempts
its default completions.

b. If neither the compspec nor the Bash default com-
pletions with -o bashdefault produced any results,
and -o default was provided, then Bash has the
readline library attempt its filename completions.

A compspec may be modified with the compopt command.
When used without command names inside an executing com-
pletion, it affects the executing completion.

When a shell function used as a completion handler returns
124, Bash retries the completion process from the beginning.
This is most useful with the default completion handler
(complete -D) to dynamically build up a set of completions

44 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

instead of loading a large set at startup. The bash(1) manpage
has an example at the end of its Programmable Completion
section.

Ian Macdonald has collected a large set of useful compspecs,
often distributed as the file /etc/bash_completion. If your sys-
tem does not have it, you can download it at http://freshmeat
.net/projects/bashcompletion/. It is worth reviewing.

Examples
Restrict files for the C compiler to C, C++ and assembler source
files, and relocatable object files:

complete -f -X '!*.[Ccos]' gcc cc

For the man command, restrict expansions to things that have
manpages:

Simple example of programmable completion for manual pages.
A more elaborate example appears in bash_completion file.
Assumes man [num] command command syntax.

shopt -s extglob # Enable extended pattern matching

Define completion function
_man () {
 local dir mandir=/usr/share/man # Local variables

 COMPREPLY=() # Clear reply list
 if [[${COMP_WORDS[1]} = +([0-9])]] # Have section no.
 then
 # section provided: man 3 foo
 # look in specified directory
 dir=$mandir/man${COMP_WORDS[COMP_CWORD-1]}
 else
 # no section, default to commands
 # look in command directories
 dir=$mandir/'man[18]'
 fi
 COMPREPLY=($(
 # Generate raw file list
 find $dir -type f |

Programmable Completion | 45

www.it-ebooks.info

http://freshmeat.net/projects/bashcompletion/
http://freshmeat.net/projects/bashcompletion/
http://www.it-ebooks.info/

 # Remove leading directories
 sed 's;..*/;;' |

 # Remove trailing suffixes
 sed 's/\.[0-9].*$//' |

 # Keep those that match given prefix
 grep "^${COMP_WORDS[$COMP_CWORD]}" |

 # Sort final list
 sort
))
}

Associate function with command
complete -F _man man

Job Control
Job control lets you place foreground jobs in the background,
bring background jobs to the foreground, or suspend running
jobs. All modern Unix systems—including Mac OS X, GNU/
Linux and BSD systems—support it, so the job control features
are automatically enabled. Many job control commands take
a jobID as an argument, which can be specified as follows:

%n Job number n

%s Job whose command line starts with string s

%?s Job whose command line contains string s

%% Current job

%+ Current job (same as above)

% Current job (same as above)

%- Previous job

The shell provides the following job control commands. For
more information on these commands, see the section “Built-
in Commands” on page 55.

46 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

bg
Put the current job in the background.

fg
Put the current job in the foreground.

jobs
List active jobs.

kill
Terminate a job.

stty tostop
Stop background jobs if they try to send output to the
terminal. (Note that stty is not a built-in command.)

suspend
Suspend a job-control shell (such as one created by su).

wait
Wait for background jobs to finish.

CTRL-Z
Suspend a foreground job. Then use bg or fg. (Your ter-
minal may use something other than CTRL-Z as the sus-
pend character, but this is unlikely.)

Shell Options
Bash provides a number of shell options, settings that you
can change to modify the shell’s behavior. You control these
options with the shopt command (see the entry for
shopt on page 98). The following descriptions describe the
behavior when set. Options marked with a dagger (†) are en-
abled by default:

autocd
When the first word of a simple command cannot be exe-
cuted, try to cd to it.

cdable_vars
Treat a nondirectory argument to cd as a variable whose
value is the directory to go to.

Shell Options | 47

www.it-ebooks.info

http://www.it-ebooks.info/

cdspell
Attempt spelling correction on each directory component
of an argument to cd. Allowed in interactive shells only.

checkhash
Check that commands found in the hash table still exist
before attempting to use them. If not, perform a normal
PATH search.

checkjobs
When an attempt is made to exit a shell and there are
stopped or running background jobs, the shell prints
There are running jobs. and a list of jobs and their statuses.
A second exit attempt (such as typing EOF again) causes
the shell to exit.

checkwinsize
Check the window size after each command, and update
LINES and COLUMNS if the size has changed.

cmdhist †
Save all lines of a multiline command in one history entry.
This permits easy re-editing of multiline commands.

compat31
Mutually exclusive with the compat32 and compat40 op-
tions. Restore the behavior of the =~ operator for the
[[ ]] command whereby the righthand side is always
treated as a regular expression to be matched. In addition,
the < and > operators ignore the locale when doing string
comparison.

compat32
Mutually exclusive with the compat31 and compat40 op-
tions. Cause the < and > operators of the [[ ]] command
to ignore the locale when doing string comparison.

compat40
Mutually exclusive with the compat31 and compat32
options. Cause the < and > operators of the [[ ]] com-
mand to ignore the locale when doing string comparison.
In addition, interrupting a command list such as cmd1;
cmd2; cmd3 aborts execution of the entire list. (Prior to

48 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

version 4.0, interrupting one command in a list did not
prevent the following commands from executing.)

dirspell
Attempt spelling correction on directory names during
word completion if the name as given does not exist.

dotglob
Include filenames starting with a period in the results of
filename expansion.

execfail
Do not exit a noninteractive shell if the command given
to exec cannot be executed. Interactive shells do not exit
in such a case, no matter the setting of this option.

expand_aliases †
Expand aliases created with alias. Disabled in noninter-
active shells.

extdebug
Enable behavior needed for debuggers:

• declare -F displays the source filename and line num-
ber for each function name argument.

• When a command run by the DEBUG trap fails, the next
command is skipped.

• When a command run by the DEBUG trap inside a shell
function or script sourced with . (dot) or source re-
turns with an exit status of 2, the shell simulates a call
to return.

• BASH_ARGC and BASH_ARGV are set as described earlier.

• Function tracing is enabled. Command substitutions,
shell functions, and subshells invoked via (…) inherit
the DEBUG and RETURN traps.

• Error tracing is enabled. Command substitutions, shell
functions, and subshells invoked via (…) inherit the
ERR trap.

Shell Options | 49

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

extglob
Enable extended pattern-matching facilities such as +(…).
(These were not in the Bourne shell and are not in POSIX;
thus Bash requires you to enable them if you want them.)

extquote †
Allow $'…' and $"…" within ${variable} expansions in-
side double quotes.

failglob
Cause patterns that do not match filenames to produce an
error.

force_fignore †
When doing completion, ignore words matching the list
of suffixes in FIGNORE, even if such words are the only pos-
sible completions.

globstar †
Enable extended directory and subdirectory matching
with the special ** pattern.

gnu_errfmt
Print error messages in the standard GNU format. Ena-
bled automatically when Bash runs in an Emacs terminal
window.

histappend
Append the history list to the file named by $HISTFILE
upon exit, instead of overwriting the file.

histreedit
Allow a user to re-edit a failed csh-style history substitu-
tion with the readline library.

histverify
Place the results of csh-style history substitution into the
readline library’s editing buffer instead of executing it di-
rectly, in case the user wishes to modify it further.

hostcomplete †
If using readline, attempt hostname completion when a
word containing an @ is being completed.

50 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

huponexit
Send a SIGHUP to all running jobs upon exiting an interac-
tive login shell.

interactive_comments †
Allow words beginning with # to start a comment in an
interactive shell.

lithist
If cmdhist is also set, save multiline commands to the his-
tory file with newlines instead of semicolons.

login_shell
Set by the shell when it is a login shell. This is a read-only
option.

mailwarn
Print the message The mail in mailfile has been read
when a file being checked for mail has been accessed since
the last time Bash checked it.

no_empty_cmd_completion
If using readline, do not search $PATH when a completion
is attempted on an empty line, or a line consisting solely
of whitespace.

nocaseglob
Ignore letter case when doing filename matching.

nocasematch
Ignore letter case when doing pattern matching for case
and [[ ]].

nullglob
Expand patterns that do not match any files to the null
string, instead of using the literal pattern as an argument.

progcomp †
Enable programmable completion.

promptvars †
Perform variable, command, and arithmetic substitution
on the values of PS1, PS2, and PS4.

Shell Options | 51

www.it-ebooks.info

http://www.it-ebooks.info/

restricted_shell
Set by the shell when it is a restricted shell. This is a read-
only option.

shift_verbose
Causes shift to print an error message when the shift
count is greater than the number of positional parameters.

sourcepath †
Causes the . (dot) and source commands to search
$PATH in order to find the file to read and execute.

xpg_echo
Causes echo to expand escape sequences, even without the
-e or -E options.

Command Execution
When you type a command, Bash looks in the following places
until it finds a match:

1. Keywords such as if and for.

2. Aliases. You can’t define an alias whose name is a shell
keyword, but you can define an alias that expands to a
keyword, e.g., alias aslongas=while. When not in
POSIX mode, Bash does allow you to define an alias for
a shell keyword.

3. Special built-ins like break and continue. The list of
POSIX special built-ins is . (dot), :, break, continue,
eval, exec, exit, export, readonly, return, set, shift,
times, trap, and unset. Bash adds source.

4. Functions. When not in POSIX mode, Bash finds func-
tions before all built-in commands.

5. Nonspecial built-ins such as cd and test.

6. Scripts and executable programs, for which the shell
searches in the directories listed in the PATH environment
variable.

52 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

7. When a command is not found, if a function named
command_not_found_handle exists, the shell will call it,
passing the command words as the function arguments.

The distinction between “special” built-in commands and non-
special ones comes from POSIX. This distinction, combined
with the command command, makes it possible to write func-
tions that override shell built-ins, such as cd. For example:

cd () { Shell function; found before built-in cd
 command cd "$@" Use real cd to change directory
 echo now in $PWD Other stuff we want to do
}

If Bash exits due to receiving SIGHUP, or if the huponexit shell
option is set, Bash will send a SIGHUP to all running child jobs.
Use disown -h to prevent Bash from sending SIGHUP to a par-
ticular job.

Coprocesses
A coprocess is a process that runs in parallel with the shell and
with which the shell can communicate. The shell starts the
process in the background, connecting its standard input and
output to a two-way pipe. There are two syntaxes for running
a coprocess:

 coproc name non-simple command Start a named coprocess

 coproc command args Start an unnamed coprocess

The shell creates an array variable named name to hold the file
descriptors for communication with the coprocess. name[0] is
the output of the coprocess (input to the controlling shell) and
name[1] is the input to the coprocess (output from the shell).
In addition, the variable name_PID holds the process-ID of the
coprocess. When no name is supplied, the shell uses COPROC.

Coprocesses | 53

www.it-ebooks.info

http://www.it-ebooks.info/

CAUTION
As of version 4.1, there can be only one active coprocess
at a time.

Example
The following example demonstrates the basic usage of the
coproc keyword and the related variables:

$ coproc testproc (echo 1 Start a named coprocess
> read aline ; echo $aline) in the background
[1] 5090
$ echo ${testproc[@]} Show the file descriptors
63 60
$ echo $testproc_PID Show the coprocess PID
5090
$ read out <&${testproc[0]} Read the first line of coprocess
$ echo $out output and show it
1
$ echo foo >&${testproc[1]} Send coprocess some input
$ read out2 <&${testproc[0]} Read second output line
[1]+ Done coproc testproc (echo 1; read aline; echo $aline)
$ echo $out2 Show the second output line
foo

Restricted Shells
A restricted shell is one that disallows certain actions, such as
changing directory, setting PATH, or running commands whose
names contain a / character.

The original V7 Bourne shell had an undocumented restricted
mode. Later versions of the Bourne shell clarified the code and
documented the facility. Bash also supplies a restricted mode.
(See the manual page for the details.)

Shell scripts can still be run, since in that case the restricted
shell calls the unrestricted version of the shell to run the script.
This includes /etc/profile, $HOME/.profile, and the other
startup files.

54 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Restricted shells are not used much in practice, as they are dif-
ficult to set up correctly.

Built-in Commands
Examples to be entered as a command line are shown with the
$ prompt. Otherwise, examples should be treated as code frag-
ments that might be included in a shell script. For convenience,
some of the reserved words used by multiline commands are
also included.

! Invert the sense of the following pipeline.

! pipeline

Negate the sense of a pipeline. Returns an exit status of 0 if the
pipeline exited nonzero, and an exit status of 1 if the pipeline exited
zero. Typically used in if and while statements.

Example
This code prints a message if user jane is not logged on:

if ! who | grep jane > /dev/null
then
 echo jane is not currently logged on
fi

Introduce a comment that runs to the end of the line.

text …

Ignore all text that follows on the same line. # is used in shell scripts
as the comment character and is not really a command.

Built-in Commands | 55

www.it-ebooks.info

http://www.it-ebooks.info/

#!shell Invoke the named interpreter to execute the script.

#!shell [option]

Used as the first line of a script to invoke the named shell. Anything
given on the rest of the line is passed as a single argument to the
named shell. This feature is typically implemented by the kernel,
but may not be supported on some very old systems. Some systems
have a limit of around 32 characters on the maximum length of
shell. For example:

#!/bin/sh

: Do-nothing command, used as a syntactic placeholder.

: [arguments]

Null command. Returns an exit status of 0. See this Example and
the ones under case on page 60. The line is still processed for side
effects, such as variable and command substitutions, or I/O
redirection.

Example
Check whether someone is logged in:

if who | grep $1 > /dev/null
then : # Do nothing if user is found
else echo "User $1 is not logged in"
fi

. Read and execute a file within the current shell.

. file [arguments]

Read and execute lines in file. file does not have to be executable
but must reside in a directory searched by $PATH. If the sourcepath
option is not enabled, Bash does not search $PATH. The arguments
are stored in the positional parameters. If Bash is not in POSIX mode
and file is not found in $PATH, Bash looks in the current directory
for file. Bash removes NUL bytes from the contents of file before
attempting to parse it. See also source on page 99.

56 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

[[ ]] Extended version of the test command.

[[expression]]

Same as test expression or [expression], except that [[ ]] allows
additional operators. Word splitting and filename expansion are
disabled. Note that the brackets ([]) are typed literally, and that
they must be surrounded by whitespace. See test on page 99.

Additional Operators

&& Logical AND of test expressions (short circuit).

|| Logical OR of test expressions (short circuit).

< First string is lexically “less than” the second, based on the lo-
cale’s sorting order. (However, see the description of the com
pat31, compat32, and compat40 options in the section “Shell Op-
tions” on page 47.)

> First string is lexically “greater than” the second, based on the
locale’s sorting order. (However, see the description of the com
pat31, compat32, and compat40 options in the section “Shell Op-
tions” on page 47.)

name () Define a shell function.

name () { commands; } [redirections]

Define name as a function. POSIX syntax. The function definition
can be written on one line or across many. You may also provide
the function keyword, an alternate form that works similarly. See
the section “Functions” on page 18.

Example
$ countfiles () {
> ls | wc -l
> }

When issued at the command line, countfiles now displays the
number of files in the current directory.

Built-in Commands | 57

www.it-ebooks.info

http://www.it-ebooks.info/

alias Define and manage shell aliases.

alias [-p] [name[='cmd']]

Assign a shorthand name as a synonym for cmd. If ='cmd' is omit-
ted, print the alias for name; if name is also omitted, print all aliases.
If the alias value contains a trailing space, the next word on the
command line also becomes a candidate for alias expansion. The
BASH_ALIASES array provides programmatic access to all defined ali-
ases; see the section “Built-in Shell Variables” on page 24. See also
unalias on page 107.

Option

-p
Print the word alias before each alias.

Example
alias dir='echo ${PWD##*/}'

bg Move a stopped job into the background.

bg [jobIDs]

Put current job or jobIDs in the background. See the section “Job
Control” on page 46.

bind Manage key bindings for the readline library.

bind [-m map] [options]
bind [-m map] [-q function] [-r sequence] [-u function]
bind [-m map] -f file
bind [-m map] -x sequence:command
bind [-m map] sequence:function
bind readline-command

Manage the readline library. Nonoption arguments have the same
form as in a .inputrc file.

Options

-f file
Read key bindings from file.

58 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-l
List the names of all the readline functions.

-m map
Use map as the keymap. Available keymaps are emacs, emacs-
ctlx, emacs-standard, emacs-meta, vi, vi-command, vi-insert,
and vi-move. vi is the same as vi-command, and emacs is the same
as emacs-standard.

-p
Print the current readline bindings such that they can be reread
from a .inputrc file.

-P
Print the current readline bindings.

-q function
Query which keys invoke the readline function function.

-r sequence
Remove the binding for key sequence sequence.

-s
Print the current readline key sequence and macro bindings
such that they can be reread from a .inputrc file.

-S
Print the current readline key sequence and macro bindings.

-u function
Unbind all keys that invoke the readline function function.

-v
Print the current readline variables such that they can be reread
from a .inputrc file.

-V
Print the current readline variables.

-x sequence:command
Execute the shell command command whenever sequence is
entered. The command may make use of and modify the READ
LINE_LINE and READLINE_POINT variables. Changes to these var-
iables are reflected in the editing state.

Built-in Commands | 59

www.it-ebooks.info

http://www.it-ebooks.info/

break Exit from one or more loops.

break [n]

Exit from a for, while, select, or until loop (or break out of n nested
loops).

builtin Execute a built-in command, bypassing functions.

builtin command [arguments …]

Run the shell built-in command command with the given argu-
ments. This allows you to bypass any functions that redefine a built-
in command’s name. The command command is more portable.

Example
This function lets you do your own tasks when you change
directory:

cd () {
 builtin cd "$@" Actually change directory
 pwd Report location
}

caller Print function or dot-file caller, for use with the Bash debugger.

caller [expression]

Print the line number and source filename of the current function
call or dot file. With nonzero expression, print that element from
the call stack. The most recent is zero. This command is for use by
the Bash debugger.

case Syntax for a case statement.

case value in
 pattern1) cmds1;; # ;& or ;;& -- see text
 pattern2) cmds2;;
 . . .
esac

60 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Execute the first set of commands (cmds1) if value matches pat-
tern1, execute the second set of commands (cmds2) if value matches
pattern2, etc. Be sure the last command in each set ends with ;;.
value is typically a positional parameter or other shell variable.
cmds are typically Unix commands, shell programming commands,
or variable assignments. Patterns can use file-generation
metacharacters. Multiple patterns (separated by |) can be specified
on the same line; in this case, the associated cmds are executed
whenever value matches any of these patterns. See the Examples
here and under eval on page 73.

The shell allows pattern to be preceded by an optional open paren-
thesis, as in (pattern). For some shell versions, it’s necessary for
balancing parentheses inside a $() construct. Bash 4.0 and 4.1 do
not require it. See also the nocasematch option in “Shell Op-
tions” on page 47.

Bash provides two additional special terminators for the cmds in a
case statement. ;& causes execution to continue into the next set of
cmds. ;;& causes the next pattern list to be tested.

Examples
Check first command-line argument and take appropriate action:

case $1 in # Match the first arg
no|yes) response=1;;
-[tT]) table=TRUE;;
*) echo "unknown option"; exit 1;;
esac

Read user-supplied lines until user exits:

while : # Null command; always true
do printf "Type . to finish ==> "
 read line
 case "$line" in
 .) echo "Message done"
 break ;;
 *) echo "$line" >> $message ;;
 esac
done

Built-in Commands | 61

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

cd Change directory.

cd [-LP] [dir]
cd [-LP] [-]

With no arguments, change to home directory of user. Otherwise,
change working directory to dir. Bash searches the directories given
in $CDPATH first, and then looks in the current directory for dir. If
dir is a relative pathname but is not in the current directory, then
$CDPATH is also searched. A directory of - stands for the previous
directory.

Options

-L
Use the logical path (what the user typed, including any sym-
bolic links) for cd .. and the value of PWD. This is the default.

-P
Use the filesystem physical path for cd .. and the value of PWD.

Example
$ ls -ld /usr/tmp /usr/tmp is a symbolic link
lrwxrwxrwx 1 root root 10 Dec 26 2008 /usr/tmp ->../var/tmp
$ cd -L /usr/tmp Logical change directory
$ pwd Show location
/usr/tmp Result is logical location
$ cd -P /usr/tmp Physical change directory
$ pwd Show location
/var/tmp Result is physical location

command Execute or print information about a built-in command.

command [-pvV] name [arg …]

Without -v or -V, execute name with given arguments. This com-
mand bypasses any aliases or functions that may be defined for
name. When used with a special built-in, it prevents the built-in
from exiting the script if it fails.

62 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Options

-p
Use a predefined default search path, not the current value of
PATH.

-v
Print a description of how the shell interprets name.

-V
Print a more verbose description of how the shell interprets
name.

Example
Create an alias for rm that will get the system’s version, and run it
with the -i option:

$ alias 'rm=command -p rm -i'

compgen Generate possible completions.

compgen [options] [string]

Generate possible completions for string according to the options.
Options are those accepted by complete, except for -p and -r. For
more information, see the entry for complete on page 63.

complete Specify how to do completion for specific commands.

complete [-DE] [options] command …

Specifies the way to complete arguments for each command. This
is discussed in the section “Programmable Completion”
on page 41.

Options

-a
Same as -A alias.

-A type
Use type to specify a list of possible completions. The type may
be one of the following:

Built-in Commands | 63

www.it-ebooks.info

http://www.it-ebooks.info/

alias Alias names

arrayvar Array variable names

binding Bindings from the readline library

builtin Shell built-in command names

command Command names

directory Directory names

disabled Names of disabled shell built-in commands

enabled Names of enabled shell built-in commands

export Exported variables

file Filenames

function Names of shell functions

group Group names

helptopic Help topics as allowed by the help built-in command

hostname Hostnames, as found in the file named by $HOSTFILE

job Job names

keyword Shell reserved keywords

running Names of running jobs

service Service names (from /etc/services)

setopt Valid arguments for set -o

shopt Valid option names for the shopt built-in command

signal Signal names

stopped Names of stopped jobs

user Usernames

variable Shell variable names

-b
Same as -A builtin.

-c
Same as -A command.

-C command
Run command in a subshell and use its output as the list of
completions.

64 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-d
Same as -A directory.

-D
Apply the rest of the options and parameters to the “default”
completion, which is used when no other compspec can be
found.

-e
Same as -A export.

-E
Apply the rest of the options and parameters to the “empty”
completion, which is used when completion is attempted on
an empty input line.

-f
Same as -A file.

-F function
Run shell function function in the current shell. Upon its re-
turn, retrieve the list of completions from the COMPREPLY array.

-g
Same as -A group.

-G pattern
Expand pattern to generate completions.

-j
Same as -A job.

-k
Same as -A keyword.

-o option
Control the behavior of the completion specification. The val-
ue for option is one of the following:

bashdefault Fall back to the normal Bash completions if no
matches are produced.

default Use the default readline completions if no matches are
produced.

dirnames Do directory name completion if no matches are
produced.

Built-in Commands | 65

www.it-ebooks.info

http://www.it-ebooks.info/

filenames Inform the readline library that the intended output is
filenames, so the library can do any filename-specific
processing, such as adding a trailing slash for directo-
ries or removing trailing spaces.

nospace Inform the readline library that it should not append
a space to words completed at the end of a line.

plusdirs Attempt directory completion and add any results to
the list of completions already generated.

-p
With no commands, print all completion settings in a way that
can be reread.

-P prefix
Prepend prefix to each resulting string after all the other op-
tions have been applied.

-r
Remove the completion settings for the given commands, or
all settings if no commands.

-s
Same as -A service.

-S suffix
Append suffix to each resulting string after all the other options
have been applied.

-u
Same as -A user.

-v
Same as -A variable.

-W wordlist
Split wordlist (a single shell word) using $IFS. The generated
list contains the members of the split list that matched the
word being completed. Each member is expanded using brace
expansion, tilde expansion, parameter and variable expan-
sion, command substitution, and arithmetic expansion. Shell
quoting is respected.

66 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-X pattern
Exclude filenames matching pattern from the filename com-
pletion list. With a leading !, the sense is reversed, and only
filenames matching pattern are retained.

compopt Print or change the completion options for a command.

compopt [-DE] [-o options] [+o options] [command …]

With no options, print the completion options for commands or for
the currently executing completion when invoked without com-
mands. With options, modify the existing compspecs for the given
commands, or for the currently executing completion when invoked
without commands.

Options

-D
Apply the options to the “default” completion.

-E
Apply the options to the “empty” completion.

-o option
Enable option, which is one of the valid options for the
complete command.

+o option
Disable option, which is one of the valid options for the
complete command.

continue Skip the rest of the body of one or more loops.

continue [n]

Skip remaining commands in a for, while, select, or until loop,
resuming with the next iteration of the loop (or skipping n nested
loops).

Built-in Commands | 67

www.it-ebooks.info

http://www.it-ebooks.info/

declare Declare shell variables and manage their attributes.

declare [options] [name[=value]]

Declare variables and manage their attributes. In function bodies,
variables are local, as if declared with the local command. All op-
tions must be given first. See also typeset on page 105.

Options

-a
Each name is an indexed array.

-A
Each name is an associative array.

-f
Each name is a function.

-F
For functions, print just the function’s name and attributes,
not the function definition (body).

-i
Each variable is an integer; in an assignment, the value is eval-
uated as an arithmetic expression.

-l
Mark names to have their values converted to lower case upon
assignment.

-p
With no names, print all variables, their values, and attributes.
With names, print the names, attributes, and values of the giv-
en variables. With -f, print function values and attributes.

-r
Mark names as read-only. Subsequent assignments will fail,
and read-only variables cannot be unset.

-t
Apply the trace attribute to each name. Traced functions
inherit the DEBUG trap. This attribute has no meaning for
variables.

68 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-u
Mark names to have their values converted to upper case upon
assignment.

-x
Mark names for export into the environment of child
processes.

With a + instead of a -, the given attribute is disabled. With no
variable names, all variables having the given attribute(s) are printed
in a form that can be reread as input to the shell.

Examples

$ declare -i val Make val an integer
$ val=4+7 Evaluate value
$ echo $val Show result
11

$ declare -r z=42 Make z read-only
$ z=31 Try to assign to it
bash: z: readonly variable Assignment fails
$ echo $z
42

$ declare -p val z Show attributes and values
declare -i val="11"
declare -r z="42"

dirs Print or manage the directory stack.

dirs [-clpv] [+n] [-n]

Print the directory stack, which is managed with pushd and popd.

Options

+n
Print the nth entry from the left; first entry is zero.

-n
Print the nth entry from the right; first entry is zero.

-c
Remove all entries from (clear) the directory stack.

Built-in Commands | 69

www.it-ebooks.info

http://www.it-ebooks.info/

-l
Produce a longer listing, one that does not replace $HOME with
~.

-p
Print the directory stack, one entry per line.

-v
Print the directory stack, one entry per line, with each entry
preceded by its index in the stack.

disown Stop managing one or more jobs.

disown [-ahr] [job …]

Remove jobs from the list of jobs managed by Bash.

Options

-a
Remove all jobs. With -h, mark all jobs.

-h
Instead of removing jobs from the list of known jobs, mark
them to not receive SIGHUP as described in the section “Com-
mand Execution” on page 52.

-r
With no jobs, remove (or mark) only running jobs.

do Reserved word that starts the body of a loop.

do

Reserved word that precedes the command sequence in a for, while,
until, or select statement.

done Reserved word that ends the body of a loop.

done

Reserved word that ends a for, while, until, or select statement.

70 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

echo Print command-line arguments to standard output.

echo [-eEn] [string]

Built-in version. Write string to standard output.

Options
If the xpg_echo shell option is set, along with POSIX mode (set -o
posix), echo does not interpret any options.

-e
Enable interpretation of the following escape sequences,
which must be quoted (or escaped with a \) to prevent inter-
pretation by the shell:

\a
Alert (ASCII BEL).

\b
Backspace.

\c
Suppress the terminating newline (same as -n).

\e
ASCII Escape character.

\f
Formfeed.

\n
Newline.

\r
Carriage return.

\t
Tab character.

\v
Vertical-tab character.

\\
Backslash.

Built-in Commands | 71

www.it-ebooks.info

http://www.it-ebooks.info/

\0nnn
ASCII character represented by octal number nnn, where
nnn is zero, one, two, or three digits and is preceded by
a 0.

\xHH
ASCII character represented by hexadecimal number
HH, where HH is one or two hexadecimal digits.

-E
Do not interpret escape sequences, even on systems where the
default behavior of the built-in echo is to interpret them.

-n
Do not print the terminating newline.

Examples
$ echo "testing printer" | lp
$ echo "Warning: ringing bell \a"

enable Enable or disable shell built-in commands.

enable [-adnps] [-f file] [command …]

Enable or disable shell built-in commands. Disabling a built-in lets
you use an external version of a command that would otherwise use
a built-in version, such as echo or test.

Options

-a
For use with -p; print information about all built-in com-
mands, disabled and enabled.

-d
Remove (delete) a built-in previously loaded with -f.

-f file
Load a new built-in command command from the shared
library file file.

-n
Disable the named built-in commands.

72 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-p
Print a list of enabled built-in commands.

-s
Print only the POSIX special built-in commands. When com-
bined with -f, the new built-in command becomes a POSIX
special built-in.

esac Reserved word that ends a case statement.

esac

Reserved word that ends a case statement.

eval Rescan and execute an already-processed input line.

eval args

Typically, eval is used in shell scripts, and args is a line of code that
contains shell variables. eval forces variable expansion to happen
first and then runs the resulting command. This “double-scanning”
is useful any time shell variables contain input/output redirection
symbols, aliases, or other shell variables. (For example, redirection
normally happens before variable expansion, so a variable contain-
ing redirection symbols must be expanded first using eval; other-
wise, the redirection symbols remain uninterpreted.)

Example
This fragment of a shell script shows how eval constructs a
command that is interpreted in the right order:

for option
do
 case "$option" in Define where output goes
 save) out=' > $newfile' ;;
 show) out=' | more' ;;
 esac
done

eval sort $file $out

Built-in Commands | 73

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

exec Replace the current script or manage shell file descriptors.

exec [command args …]
exec [-a name] [-cl] [command args …]
exec redirections …

Execute command in place of the current process (instead of creat-
ing a new process). With only redirections, exec is also useful for
opening, closing, copying, or moving file descriptors. In this case,
the script continues to run.

Options

-a
Use name for the value of argv[0].

-c
Clear the environment before executing the program.

-l
Place a minus sign at the front of argv[0], just as login(1) does.

Examples

trap 'exec 2>&-' 0 Close stderr when script exits (signal 0)

$ exec /bin/csh Replace shell with C shell
$ exec < infile Reassign standard input to infile

exit Exit the shell script.

exit [n]

Exit a shell script with status n (e.g., exit 1). n can be 0 (success)
or nonzero (failure). If n is not given, the shell’s exit status is that
of the most recent command. exit can be issued at the command
line to close a window (log out). Exit statuses can range in value
from 0 to 255. Any trap on EXIT is executed before the shell exits.

Example
if [$# -eq 0]
then
 echo "Usage: $0 [-c] [-d] file(s)" 1>&2
 exit 1 # Error status
fi

74 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

export Export variables or print information about exported variables.

export [variables]
export [name=[value] …]
export -p
export [-fn] [name=[value] …]

Pass (export) the value of one or more shell variables, giving global
meaning to the variables (which are local by default). For example,
a variable defined in one shell script must be exported if its value is
used in other programs called by the script. If no variables are given,
export lists the variables exported by the current shell. The second
form is the POSIX version, which is similar to the first form, except
that you can set a variable name to a value before exporting it.

Options

-f
Names refer to functions; the functions are exported in the
environment.

-n
Remove the named variables or functions from the
environment.

-p
Print export before printing the names and values of exported
variables. This allows saving a list of exported variables for
rereading later.

Examples
In the original Bourne shell, you would type:

TERM=vt100
export TERM

In Bash, you could type this instead:

export TERM=vt100

false Exit with a false return value.

false

Built-in command that exits with a false return value.

Built-in Commands | 75

www.it-ebooks.info

http://www.it-ebooks.info/

fc Manage command-line history.

fc [options] [first [last]]
fc -e - [old=new] [command]
fc -s [old=new] [command]

Display or edit commands in the history list. (Use only one of -e,
-l, or -s.) first and last are numbers or strings specifying the range
of commands to display or edit. If last is omitted, fc applies to a
single command (specified by first). If both first and last are omitted,
fc edits the previous command or lists the last 16. The second form
of fc takes a history command, replaces old with new, and executes
the modified command. If no strings are specified, command is just
re-executed. If no command is given either, the previous command
is re-executed. command is a number or string like first. See the
Examples in the section “Command History” on page 37. The third
form is equivalent to the second form.

Options

-e [editor]
Invoke editor to edit the specified history commands. The de-
fault editor is set by the shell variable FCEDIT. If that variable is
not set, the default is /bin/ed. (Bash defaults to vi; versions
3.1 and newer default to /bin/ed when in POSIX mode.) Bash
tries $FCEDIT, then $EDITOR, and then /bin/ed.

-e -
Execute (or redo) a history command; refer to second syntax
line above.

-l
List the specified command or range of commands, or list the
last 16.

-n
Suppress command numbering from the -l listing.

-r
Reverse the order of the -l listing.

-s
Equivalent to -e -.

76 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

fg Move a running or suspended background job into the foreground.

fg [jobIDs]

Bring current job or jobIDs to the foreground. See the section “Job
Control” on page 46.

fi Reserved word that ends an if statement.

fi

Reserved word that ends an if statement.

for Start a loop over a list of values.

for x [in [list]]
do
 commands
done

For variable x (in optional list of values), do commands. If in list is
omitted, "$@" (the positional parameters) is assumed. If the expan-
sion of list is empty, no commands are executed.

Examples
Paginate files specified on the command line, and save each result:

for file
do
 pr $file > $file.tmp
done

Same, but put entire loop into the background:

for file
do
 pr $file > $file.tmp
done &

Search chapters for a list of words (like fgrep -f):

for item in `cat program_list`
do
 echo "Checking chapters for"
 echo "references to program $item…"

Built-in Commands | 77

www.it-ebooks.info

http://www.it-ebooks.info/

 grep -c "$item.[co]" chap*
done

Extract a one-word title from each file named on the command line
and use it as the new filename:

for file
do
 name=`sed -n 's/NAME: //p' $file`
 mv $file $name
done

for Start an arithmetic loop.

for ((init; cond; incr))
do
 commands
done

Arithmetic for loop, similar to C’s. Evaluate init. While cond is true,
execute the body of the loop. Evaluate incr before retesting cond.
Any one of the expressions may be omitted; a missing cond is treated
as being true.

Example
Search for a phrase in each odd chapter:

for ((x=1; x <= 20; x += 2))
do
 grep $1 chap$x
done

function Define a shell function.

function name { commands; } [redirections]
function name () { commands; } [redirections]

Define name as a shell function. See the description of function se-
mantics in the section “Functions” on page 18.

Example
Define a function to count files.

78 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

$ function countfiles {
> ls | wc -l
> }

getopts Process command-line options and arguments.

getopts string name [args]

Process command-line arguments (or args, if specified) and check
for legal options. getopts is used in shell script loops and is intended
to ensure standard syntax for command-line options. Standard syn-
tax dictates that command-line options begin with a -. Options can
be stacked; i.e., consecutive letters can follow a single -. End pro-
cessing of options by specifying -- on the command line. string
contains the option letters to be recognized by getopts when run-
ning the shell script. Valid options are processed in turn and stored
in the shell variable name. If an option character in the options string
is followed by a colon, the actual option must be followed by one
or more arguments. (Multiple arguments must be given to the com-
mand as one shell word. This is done by quoting the arguments or
separating them with commas. The application must be written to
expect multiple arguments in this format.) getopts uses the shell
variables OPTARG, OPTIND, and OPTERR.

hash Manage the table of previously found commands.

hash [-dlrt] [-p file] [commands]

As the shell finds commands along the search path ($PATH), it re-
members the found locations in an internal hash table. The next
time you enter a command, the shell uses the value stored in its hash
table.

With no arguments, hash lists the current hashed commands. The
display shows hits (the number of times the command has been
called by the shell) and the command name. If the table is empty,
then if Bash is in POSIX mode, hash prints nothing. Otherwise, it
prints hash: hash table empty on standard output.

Built-in Commands | 79

www.it-ebooks.info

http://www.it-ebooks.info/

With commands, the shell adds those commands to the hash table.
With no options and just commands, the shell resets the “hit count”
associated with each command to zero.

The BASH_CMDS array provides programmatic access to all entries in
the hash table; see the section “Built-in Shell Variables”
on page 24.

Options

-d
Remove (delete) just the specified commands from the hash
table.

-l
Produce output in a format that can be reread to rebuild the
hash table.

-p file
Associate file with command in the hash table.

-r
Remove all commands from the hash table.

-t
With one name, print the full pathname of the command.
With more than one name, print the name and the full path,
in two columns.

Besides the -r option, the hash table is also cleared when PATH is
assigned. Use PATH=$PATH to clear the hash table without affecting
your search path. This is most useful if you have installed a new
version of a command in a directory that is earlier in $PATH than the
current version of the command.

help Print command usage information.

help [-dms] [pattern]

Print usage information on standard output for each command that
matches pattern. The information includes descriptions of each
command’s options.

80 | The Bash Shell

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

Options

-d
Print a brief description of what the command does.

-m
Print the full description of the command in a format similar
to that of a Unix manual page.

-s
Print brief (short) usage information.

Examples
$ help -s cd Short help
cd: cd [-L|-P] [dir]

$ help true Full help
true: true
Return a successful result.

history Print command-line history.

history [count]
history [options]

Print commands in the history list or manage the history file. With
no options or arguments, display the history list with command
numbers. With a count argument, print only that many of the most
recent commands.

Options

-a
Append new history lines (those executed since the beginning
of the session) to the history file.

-c
Clear the history list (remove all entries).

-d position
Delete the history item at position position.

-n
Read unread history lines from the history file into the history
list.

Built-in Commands | 81

www.it-ebooks.info

http://www.it-ebooks.info/

-p argument …
Perform csh-style history expansion on each argument, print-
ing the results to standard output. The results are not saved in
the history list.

-r
Read the history file and replace the history list with its
contents.

-s argument …
Store the arguments in the history list, as a single entry.

-w
Write the current history list to the history file, overwriting it
entirely.

if Syntax for an if-then-else statement.

if condition1
then commands1
[elif condition2
 then commands2]
 .
 .
 .
[else commands3]
fi

If condition1 is met, do commands1; otherwise, if condition2 is met,
do commands2; if neither is met, do commands3. Conditions are
often specified with the test and [[ ]] commands. See
test on page 99, and [[ ]] on page 57, for a full list of conditions,
and see additional Examples under : on page 56, and ex-
it on page 74.

Examples
Insert a 0 before numbers less than 10:

if [$counter -lt 10]
then number=0$counter
else number=$counter
fi

82 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Make a directory if it doesn’t exist:

if [! -d $dir]
then
 mkdir -m 775 $dir
fi

jobs List running or stopped jobs.

jobs [options] [jobIDs]

List all running or stopped jobs, or list those specified by jobIDs.
For example, you can check whether a long compilation or text
formatting job is still running. Also useful before logging out. See
the section “Job Control” on page 46.

Options

-l
List job IDs and process group IDs.

-n
List only jobs whose status changed since last notification.

-p
List process group IDs only.

-r
List running jobs only.

-x cmd
Replace each job ID found in cmd with the associated process
ID and then execute cmd.

kill Send a signal to one or more jobs.

kill [options] IDs

Terminate each specified process ID or job ID. You must own the
process or be a privileged user. This built-in is similar to the external
kill command, but also allows symbolic job names. Stubborn pro-
cesses can be killed using signal 9. See the section “Job Con-
trol” on page 46.

Built-in Commands | 83

www.it-ebooks.info

http://www.it-ebooks.info/

The command kill -l prints a list of the available signal names.
The list varies by system architecture; for a PC-based system, it
looks like this:

$ kill -l From Bash on GNU/Linux
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

The signals and their numbers are defined in the C <signal.h>
header file. This file may include others, thus the actual location
varies across systems.

Options

-l [n]
List the signal names. (Used by itself.) A numeric value n is
interpreted as either a signal number, or as an exit status for a
process terminated by a signal (128 + n). In both cases, kill
prints the corresponding signal name.

-n num
Send the given signal number.

-s name
Send the given signal name.

-signal
The signal number (from <signal.h>) or name (from
kill -l). With a signal number of 9, the kill is absolute.

84 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

let Perform arithmetic.

let expressions
((expressions))

Perform arithmetic as specified by one or more expressions. expres-
sions consist of numbers, operators, and shell variables (which don’t
need a preceding $). Expressions must be quoted if they contain
spaces or other special characters. The (()) form does the quoting
for you. For more information and examples, see the section
“Arithmetic Expressions” on page 36. See also expr(1).

Examples
Each of these examples adds 1 to variable i:

i=`expr $i + 1` All Bourne shells
let i=i+1 Bash
let "i = i + 1"
((i = i + 1))
((i += 1))
((i++))

local Declare local variables inside shell functions.

local [options] [name[=value]]

Declares local variables for use inside functions. The options are the
same as those accepted by declare; see declare on page 68 for the
full list. It is an error to use local outside a function body.

logout Exit the shell.

logout

Exit a login shell. The command fails if the current shell is not a
login shell.

Built-in Commands | 85

www.it-ebooks.info

http://www.it-ebooks.info/

mapfile Read a file into a shell array.

mapfile [options] [array]

Read standard input into array, one line per element. If no array,
use MAPFILE. An alternate file descriptor may be given with the -u
option.

Options

-c count
Specifies the “quantum” for the -C option. The default value
is 5,000.

-C command
Every “quantum” lines, evaluate command, passing it the in-
dex in array that is about to be assigned. The quantum is set
with the -c option.

-n count
Read at most count lines. If count is zero, read all the lines.

-O index
Fill array starting at origin index. The default origin is zero.

-s count
Ignore the first count lines.

-t
Remove the trailing newline from each line read.

-u n
Read from file descriptor n instead of from standard input.

popd Pop a directory off of the directory stack.

popd [-n] [+count] [-count]

Pop the top directory off the directory stack (as shown by the
dirs command), and change to the new top directory, or manage
the directory stack.

86 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Options

-n
Don’t change to the new top directory; just manipulate the
stack.

+count
Remove the item count entries from the left, as shown by
dirs. Counting starts at zero. No directory change occurs.

-count
Remove the item count entries from the right, as shown by
dirs. Counting starts at zero. No directory change occurs.

printf Do formatted printing of command-line arguments.

printf [-v var] format [val …]

Formatted printing, like the ANSI C printf function. The format
string is reused from the beginning if there are more values than
format specifiers.

Option

-v var
Save the result in var instead of printing it to standard output.
var may be an array element.

Additional Format Letters
Bash accepts these additional format letters:

%b
Expand escape sequences in strings (e.g., \t to tab, and so on).

%q
Print a quoted string that can be reread later on.

Built-in Commands | 87

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

pushd Push a directory onto the directory stack.

pushd [-n] [directory]
pushd [-n] [+count] [-count]

Add directory to the directory stack, or rotate the directory stack.
With no arguments, swap the top two entries on the stack, and
change to the new top entry.

Options

-n
Don’t change to the new top directory; just manipulate the
stack.

+count
Rotate the stack so that the count’th item from the left, as
shown by dirs, is the new top of the stack. Counting starts at
zero. The new top becomes the current directory.

-count
Rotate the stack so that the count’th item from the right, as
shown by dirs, is the new top of the stack. Counting starts at
zero. The new top becomes the current directory.

pwd Print working directory.

pwd [-LP]

Print the present working directory on standard output.

Options
Options give control over the use of logical versus physical treat-
ment of the printed path. See also the entry for cd on page 62.

-L
Use logical path (what the user typed, including any symbolic
links) and the value of PWD for the current directory. This is the
default.

-P
Use the filesystem physical path for the current directory.

88 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

read Read data into one or more shell variables.

read [options] [variable1 [variable2 …]]

Read one line of standard input and assign each word to the corre-
sponding variable, with all leftover words assigned to the last vari-
able. If only one variable is specified, the entire line is assigned to
that variable. See the Examples here and under case on page 60.
The return status is 0 unless EOF is reached. If no variables are
given, input is stored in the REPLY variable.

Options

-a array
Read into indexed array array.

-d delim
Read up to the first occurrence of delim, instead of newline.

-e
Use the readline library if reading from a terminal.

-i text
When using the readline library, put text into the initial editing
buffer.

-n count
Read at most count bytes. If a delimiter character is seen before
reading count bytes, stop reading further input.

-N count
Read at most count bytes. Delimiter characters in the data do
not cause Bash to stop reading; instead they are included in
the data that is read.

-p prompt
Print prompt before reading input.

-r
Raw mode; ignore \ as a line-continuation character.

-s
Read silently; characters are not echoed.

Built-in Commands | 89

www.it-ebooks.info

http://www.it-ebooks.info/

-t timeout
When reading from a terminal or pipe, if no data is entered
after timeout seconds, return 1. This prevents an application
from hanging forever, waiting for user input. Values for time-
out may be fractional. If timeout is zero but data is available to
be read, read will return successfully. Partial input read when
the timeout expires is saved in variable1; the other variables
are cleared. read returns greater than 128 if no data were read
and the timeout expires.

-u [n]
Read input from file descriptor n (default is 0).

Examples
Read three variables:

$ read first last address
Sarah Caldwell 123 Main Street

$ echo "$last, $first\n$address"
Caldwell, Sarah
123 Main Street

Prompt yourself to enter two temperatures:

$ read -p "High low: " n1 n2
High low: 65 33

readarray Read a file into a shell array.

readarray [options] [array]

Identical to the mapfile command. See mapfile on page 86 for more
information.

readonly Mark variables as read only.

readonly [-afp] [variable[=value] …]

Prevent the specified shell variables from being assigned new values.
An initial value may be supplied using the assignment syntax, but
that value may not be changed subsequently. Read-only variables
may not be unset.

90 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Options

-a
Each variable must refer to an indexed array.

-A
Each variable must refer to an associative array.

-f
Each variable must refer to a function.

-p
Print readonly before printing the names and values of read-
only variables. This allows saving a list of read-only variables
for rereading later.

return Return an exit status from a shell function.

return [n]

Use inside a function definition. Exit the function with status n or
with the exit status of the previously executed command. If n is
negative, precede it with --.

select Present a menu of items for use in executing a block of code.

select x [in list]
do
 commands
done

Display a list of menu items on standard error, numbered in the
order they are specified in list. If no in list is given, items are taken
from the command line (via "$@"). Following the menu is a prompt
string (the value of PS3). At the $PS3 prompt, users select a menu
item by typing its number, or they redisplay the menu by pressing
the Enter key. User input is stored in the shell variable REPLY. If a
valid item number is typed, the shell sets x to the chosen value and
executes commands. Typing EOF terminates the loop.

Built-in Commands | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Example
PS3="Select the item number: "
select event in Format Page View Exit
do
 case "$event" in
 Format) nroff $file | lp;;
 Page) pr $file | lp;;
 View) more $file;;
 Exit) exit 0;;
 *) echo "Invalid selection";;
 esac
done

The output of this script looks like this:

1. Format
2. Page
3. View
4. Exit
Select the item number:

set Manage shell options and the script’s command-line parameters.

set [options arg1 arg2 …]

With no arguments, set prints the values of all variables known to
the current shell. Options can be enabled (-option) or disabled
(+option). Options can also be set when the shell is invoked. (See
the section “Invoking the Shell” on page 4.) Arguments are assigned
in order to $1, $2, etc.

Options

-a
From now on, automatically mark variables for export after
defining or changing them.

-b
Print job completion messages as soon as jobs terminate; don’t
wait until the next prompt.

-B
Enable brace expansion. On by default.

-C
Prevent overwriting via > redirection; use >| to overwrite files.

92 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-e
Exit if a command yields a nonzero exit status. The ERR trap
executes before the shell exits. The exact behavior is compli-
cated; see “set -e Details” on page 97, later in this entry.

-E
Cause shell functions, command substitutions, and subshells
to inherit the ERR trap.

-f
Ignore filename metacharacters (e.g., * ? []).

-h
Locate commands as they are defined. On by default. See the
entry for hash on page 79.

-H
Enable csh-style history substitution. On by default. See the
section “C-Shell–Style History” on page 39.

-k
Assignment of environment variables (var=value) takes effect
regardless of where they appear on the command line. Nor-
mally, assignments must precede the command name.

-m
Enable job control; background jobs execute in a separate
process group. -m is usually set automatically.

-n
Read commands but don’t execute; useful for checking syntax.
Interactive shells ignore this option.

+o [mode]
With mode, disable the given shell mode. Plain set +o prints
the settings of all the current modes. This is in a form that can
be reread by the shell later.

-o [mode]
List shell modes, or turn on mode mode. Many modes can be
set by other options. Modes are:

allexport Same as -a.

braceexpand Same as -B.

Built-in Commands | 93

www.it-ebooks.info

http://www.it-ebooks.info/

emacs Set command-line editor to emacs.

errexit Same as -e.

errtrace Same as -E.

functrace Same as -T.

hashall Same as -h.

histexpand Same as -H.

history Enable command history. On by default.

ignoreeof Don’t process EOF signals. To exit the shell, type exit.

keyword Same as -k.

monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Omit function definitions from the history file. Ac-
cepted but ignored by Bash.

notify Same as -b.

nounset Same as -u.

onecmd Same as -t.

physical Same as -P.

pipefail Change pipeline exit status to be that of the rightmost
command that failed, or zero if all exited successfully.

posix Change to POSIX mode.

privileged Same as -p.

verbose Same as -v.

vi Set command-line editor to vi.

xtrace Same as -x.

+p
Reset effective UID to real UID.

-p
Start up as a privileged user. Don’t read $ENV or $BASH_ENV,
don’t import functions from the environment, and ignore the
values of the BASHOPTS, CDPATH, GLOBIGNORE, and SHELLOPTS
variables.

94 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-P
Always use physical paths for cd and pwd.

-t
Exit after one command is executed.

-T
Cause shell functions, command substitutions, and subshells
to inherit the DEBUG and RETURN traps.

-u
In substitutions, treat unset variables as errors. However, ref-
erences to $@ and $* are not errors when there are no positional
parameters.

-v
Show each shell command line when read.

-x
Show commands and arguments when executed, preceded by
the value of PS4. This provides step-by-step tracing of shell
scripts.

-
Turn off -v and -x, and turn off option processing. Included
for compatibility with older versions of the Bourne shell.

--
Used as the last option; -- turns off option processing so that
arguments beginning with - are not misinterpreted as options.
(For example, you can set $1 to -1.) If no arguments are given
after --, unset the positional parameters.

Option Summary

Option Same as

-a -o allexport

-b -o notify

-B -o braceexpand

-C -o noclobber

-e -o errexit

-E -o errtrace

Built-in Commands | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Option Same as

-f -o noglob

-h -o hashall

-H -o histexpand

-k -o keyword

-m -o monitor

-n -o noexec

-o allexport -a

-o braceexpand -B

-o emacs

-o errexit -e

-o errtrace -E

-o functrace -T

-o hashall -h

-o history

-o histexpand -H

-o ignoreeof

-o keyword -k

-o monitor -m

-o noclobber -C

-o noexec -n

-o noglob -f

-o nolog

-o notify -b

-o nounset -u

-o onecmd -t

-o physical -P

-o pipefail

-o posix

-o privileged -p

-o verbose -v

96 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

Option Same as

-o vi

-o xtrace -x

-p -o privileged

-P -o physical

-t -o onecmd

-T -o functrace

-u -o nonunset

-v -o verbose

-x -o xtrace

set -e Details
When set -e is enabled, the shell exits if one of the following fails:
a pipeline (which can be just a single command); a subshell com-
mand in parentheses; or any of the commands in a group enclosed
in braces. In POSIX mode, shells created to run command substi-
tutions inherit the setting of set -e; otherwise Bash clears the option
in such subshells.

Failure of a command (non-zero exit status) does not cause an exit
in the following cases: Any command in a list following while or
until; the pipeline following if or elif; any command in an && or
|| list except the last; any command in a pipeline but the last; or if
the sense of the command’s value is being inverted with !.

Examples
set -- "$num" -20 -30 Set $1 to $num, $2 to -20, $3 to -30
set -vx Read each command line; show it;
 execute it; show it again (with arguments)
set +x Stop command tracing
set -o noclobber Prevent file overwriting
set +o noclobber Allow file overwriting again

Built-in Commands | 97

www.it-ebooks.info

Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

shift Shift the command-line arguments left.

shift [n]

Shift positional arguments (e.g., $2 becomes $1). If n is given, shift
to the left n places. Used in while loops to iterate through command-
line arguments.

Example
shift $(($1 + $6)) Use expression result as shift count

shopt Manage shell options.

shopt [-opqsu] [option]

Set or unset shell options. With no options or just -p, print the
names and settings of the options. See the section “Shell Op-
tions” on page 47, for a description of the various options.

Options

-o
Each option must be one of the shell option names for set -o,
instead of the options listed in “Shell Options” on page 47.

-p
Print the option settings as shopt commands that can be reread
later.

-q
Quiet mode. The exit status is zero if the given option is set,
nonzero otherwise. With multiple options, all of them must
be set for a zero exit status.

-s
Set the given options. With no options, print only those that
are set.

-u
Unset the given options. With no options, print only those that
are unset.

98 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

source Read and execute a file within the current shell.

source file [arguments]

Identical to the . (dot) command; see the entry for . on page 56, for
more information.

suspend Suspend the current shell.

suspend [-f]

Suspend the current shell. Often used to stop an su command.

Option

-f
Force the suspension, even if the shell is a login shell.

test Evaluate conditions, for use in loops and conditionals.

test condition
[condition]
[[condition]]

Evaluate a condition and, if its value is true, return a zero exit status;
otherwise, return a nonzero exit status. An alternate form of the
command uses [] rather than the word test. An additional alter-
nate form uses [[ ]], in which case word splitting and pathname
expansion are not done (see [[ ]] on page 57). condition is con-
structed using the following expressions. Conditions are true if the
description holds true.

File Conditions

-a file file exists. (Deprecated; use -e instead.)

-b file file exists and is a block special file.

-c file file exists and is a character special file.

-d file file exists and is a directory.

-e file file exists. (Same as -a, for POSIX compatibility.)

-f file file exists and is a regular file.

Built-in Commands | 99

www.it-ebooks.info

http://www.it-ebooks.info/

-g file file exists, and its set-group-id bit is set.

-G file file exists, and its group is the effective group ID.

-h file file exists and is a symbolic link. (Same as -L.)

-k file file exists, and its sticky bit is set.

-L file file exists and is a symbolic link. (Same as -h.)

-N file file exists and was modified after it was last read.

-O file file exists, and its owner is the effective user ID.

-p file file exists and is a named pipe (FIFO).

-r file file exists and is readable.

-s file file exists and has a size greater than zero.

-S file file exists and is a socket.

-t [n] The open file descriptor n is associated with a terminal
device; default n is 1.

-u file file exists, and its set-user-id bit is set.

-w file file exists and is writable.

-x file file exists and is executable.

f1 -ef f2 Files f1 and f2 are linked (refer to same file).

f1 -nt f2 File f1 is newer than f2.

f1 -ot f2 File f1 is older than f2.

String Conditions

string string is not null.

-n s1 String s1 has nonzero length.

-z s1 String s1 has zero length.

s1 == s2 Strings s1 and s2 are identical. Inside [[ ]], s2 can be a
wildcard pattern. Quote s2 to treat it literally. (See the sec-
tion “Filename Metacharacters” on page 7. See also the
nocasematch option in “Shell Options” on page 47.)

s1 = s2 Same as the == operator. Should be used with test and
[ ] for compatibility with POSIX and other shells.

s1 != s2 Strings s1 and s2 are not identical. Inside [[ ]], s2 can be a
wildcard pattern. Quote s2 to treat it literally.

100 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

s1 =~ s2 String s1 matches extended regular expression s2. Only
available inside [[ ]]. Quote s2 to force string matching,
instead of regular expression matching. Strings matched by
parenthesized subexpressions are placed into elements of
the BASH_REMATCH array. See the description of
BASH_REMATCH in the section “Built-in Shell Varia-
bles” on page 24. See also the compat31, compat32, and com
pat40 options in “Shell Options” on page 47.

s1 < s2 String value of s1 precedes that of s2. Bash uses the locale’s
sorting order. (Use only within [[ ]].)

s1 > s2 String value of s1 follows that of s2. Bash uses the locale’s
sorting order. (Use only within [[ ]].)

Internal Shell Conditions

-o opt Option opt for set -o is on.

Integer Comparisons

n1 -eq n2 n1 equals n2.

n1 -ge n2 n1 is greater than or equal to n2.

n1 -gt n2 n1 is greater than n2.

n1 -le n2 n1 is less than or equal to n2.

n1 -lt n2 n1 is less than n2.

n1 -ne n2 n1 does not equal n2.

Combined Forms

(condition)
True if condition is true (used for grouping). For test and
[], the parentheses should be quoted by a \. The form using
[[ ]] doesn’t require quoting the parentheses.

! condition
True if condition is false.

condition1 -a condition2
True if both conditions are true.

Built-in Commands | 101

www.it-ebooks.info

http://www.it-ebooks.info/

condition1 && condition2
True if both conditions are true. Short-circuit form. (Use only
within [[ ]].)

condition1 -o condition2
True if either condition is true.

condition1 || condition2
True if either condition is true. Short-circuit form. (Use only
within [[ ]].)

Examples
The following examples show the first line of various statements
that might use a test condition:

while test $# -gt 0 While there are arguments
while [-n "$1"] While there are nonempty arguments
if [$count -lt 10] If $count is less than 10
if [-d RCS] If the RCS directory exists
if ["$answer" != "y"] If the answer is not y
if [! -r "$1" -o ! -f "$1"] If the first argument is not a
 readable file or a regular file

time Time a command.

time command

Execute command and print the total elapsed time, user time, and
system time (in seconds). Same as the external command time, ex-
cept that the built-in version can also time other built-in commands
as well as all commands in a pipeline.

times Print accumulated CPU times.

times

Print accumulated process times for user and system.

102 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

trap Manage the disposition of signals within a shell script.

trap [[commands] signals]
trap -p
trap -l

Execute commands if any signals are received. The second form
prints the current trap settings in a form suitable for rereading later.
The third form lists all signals and their numbers, like kill -l.

Common signals include EXIT (0), HUP (1), INT (2), and TERM (15).
Multiple commands must be quoted as a group and separated by
semicolons internally. If commands is the null string (i.e., trap ""
signals), signals are ignored by the shell. If commands are omitted
entirely, reset processing of specified signals to the default action.
If commands is “-”, reset signals to their initial defaults.

In general, commands should be quoted using single quotes, so that
any variable or other substitutions are delayed until the signal is
handled. Otherwise, with double quotes, the expansions would be
evaluated earlier, when the trap command itself is executed.

If both commands and signals are omitted, list current trap assign-
ments. See the Examples here and in exec on page 74.

Signals
A list of signal names, numbers, and meanings were given in the
entry for kill on page 83. The shell allows you to use either the
signal number or the signal name (without the SIG prefix). In addi-
tion, the shell supports “pseudo-signals,” signal names or numbers
that aren’t real operating system signals but which direct the shell
to perform a specific action. These signals are:

DEBUG Execution of any command.

ERR Nonzero exit status.

EXIT Exit from shell (usually when shell script finishes).

RETURN A return is executed, or a script run with . (dot) or source
finishes.

0 Same as EXIT, for historical compatibility with the Bourne
shell.

Built-in Commands | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Examples

trap "" INT Ignore interrupts (signal 2)
trap INT Obey interrupts again

Remove a $tmp file when the shell program exits, or if the user logs
out, presses CTRL-C, or does a kill:

trap "rm -f $tmp; exit" EXIT HUP INT TERM POSIX style
trap "rm -f $tmp; exit" 0 1 2 15 Original Bourne shell

Print a “clean up” message when the shell program receives signals
SIGHUP, SIGINT, or SIGTERM:

trap 'echo Interrupt! Cleaning up…' HUP INT TERM

true Exit with a true return value.

true

Built-in command that exits with a true return value.

type Print the type of a command.

type [-afpPt] commands

Show whether each command name is an external command, a
built-in command, an alias, a shell keyword, or a defined shell
function.

Options

-a
Print all locations in $PATH that include command, including
aliases and functions. Use -p together with -a to suppress ali-
ases and functions.

-f
Suppress function lookup, as with command.

-p
If type -t would print file for a given command, print the full
pathname for the corresponding executable files. Otherwise,
print nothing.

104 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-P
Like -p, but force a search of $PATH, even if type -t would not
print file.

-t
Print a word describing each command. The word is one of
alias, builtin, file, function, or keyword, depending upon the
type of each command.

Example
$ type mv read if
mv is /bin/mv
read is a shell builtin
if is a shell keyword

typeset Declare shell variables and manage their attributes.

typeset [options] [variable[=value …]]

Identical to declare. See the entry for declare on page 68.

ulimit Manage various process limits.

ulimit [options] [n]

Print the value of one or more resource limits, or, if n is specified,
set a resource limit to n. Resource limits can be either hard (-H) or
soft (-S). By default, ulimit sets both limits or prints the soft limit.
The options determine which resource is acted upon.

Options

-H
Hard limit. Anyone can lower a hard limit; only privileged
users can raise it.

-S
Soft limit. Must be less than or equal to the hard limit.

-a
Print all limits.

Built-in Commands | 105

www.it-ebooks.info

http://www.it-ebooks.info/

-b
Maximum size of a socket buffer.

-c
Maximum size of core files. Default units are 1K-byte blocks.
In POSIX mode, units are 512-byte blocks.

-d
Maximum kilobytes of data segment or heap.

-e
Maximum scheduling priority (nice value).

-f
Maximum size of files (the default option). Default units are
1K-byte blocks. In POSIX mode, units are 512-byte blocks.

-i
Maximum number of pending signals.

-l
Maximum size of address space that can be locked in memory.

-m
Maximum kilobytes of physical memory. (Not effective on all
Unix systems.)

-n
Maximum number of file descriptors.

-p
Size of pipe buffers. (Not effective on all Unix systems.)

-q
Maximum number of bytes in POSIX message queues.

-r
Maximum real-time scheduling priority.

-s
Maximum kilobytes of stack segment.

-t
Maximum CPU seconds.

-T
Maximum number of threads.

106 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

-u
Maximum number of processes a single user can have.

-v
Maximum kilobytes of virtual memory. (Not effective on all
Unix systems.)

-x
Maximum number of file locks.

umask Display or set the process’s file creation mask.

umask [nnn]
umask [-pS] [mask]

Display file creation mask or set file creation mask to octal value
nnn. The file creation mask determines which permission bits are
turned off (e.g., umask 002 produces rw-rw-r--). For the second
form, a symbolic mask represents permissions to keep.

Options

-p
Output is in a form that can be reread later by the shell.

-S
Print the current mask using symbolic notation.

unalias Remove previously defined aliases.

unalias names
unalias -a

Remove names from the alias list. See also alias on page 58.

Option

-a
Remove all aliases.

Built-in Commands | 107

www.it-ebooks.info

http://www.it-ebooks.info/

unset Remove variables or functions.

unset [options] names

Erase definitions of functions or variables listed in names.

Options

-f
Unset functions names.

-v
Unset variables names (default).

until Syntax for a loop that runs until a condition becomes true.

until condition
do
 commands
done

Until condition is met, do commands. condition is often specified
with the test command. See the Examples under case on page 60,
and test on page 99.

wait Wait for a process or job to complete.

wait [ID]

With no ID, pause in execution until all background jobs complete
(exit status 0 is returned), or pause until the specified background
process ID or job ID completes (exit status of ID is returned). Note
that the shell variable $! contains the process ID of the most recent
background process.

Example
wait $! Wait for most recent background process to finish

108 | The Bash Shell

www.it-ebooks.info

http://www.it-ebooks.info/

while Syntax for a loop that runs while a condition remains true.

while condition
do
 commands
done

While condition is met, do commands. condition is often specified
with the test command. See the Examples under case on page 60,
and test on page 99.

filename Run an external command.

filename [arguments]

Read and execute commands from executable file filename, or ex-
ecute a binary object file.

Resources
This section briefly describes other sources of information
about Bash.

Online Resources
http://ftp.gnu.org/gnu/bash

The top-level directory for Bash source code releases.
Source code is usually made available as .tar.gz files, such
as bash-4.1.tar.gz.

ftp://ftp.gnu.org/pub/gnu/bash/bash-4.1-patches
Patches for Bash 4.1 are in this directory.

http://www.gnu.org/software/bash/bash.html, http://tiswww.tis
.cwru.edu/~chet/bash/bashtop.html

The two “home pages” for the Bash shell.

http://bashdb.sourceforge.net
The Bash debugger.

Resources | 109

www.it-ebooks.info

http://ftp.gnu.org/gnu/bash
ftp://ftp.gnu.org/pub/gnu/bash/bash-4.1-patches
http://www.gnu.org/software/bash/bash.html
http://tiswww.tis.cwru.edu/~chet/bash/bashtop.html
http://tiswww.tis.cwru.edu/~chet/bash/bashtop.html
http://bashdb.sourceforge.net
Boykma
Text Box
Download from Wow! eBook

http://www.it-ebooks.info/

http://freshmeat.net/projects/bashcompletion
Ian Macdonald’s collected set of completion
specifications.

http://www.opengroup.org/onlinepubs/009695399
The online version of the POSIX standard.

Books
Newham, Cameron. Learning the bash Shell, Third Edi-
tion. Sebastopol: O’Reilly Media, 2005.

Robbins, Arnold, and Nelson H.F. Beebe. Classic Shell
Scripting. Sebastopol: O’Reilly Media, 2005.

Acknowledgments
Thanks to Chet Ramey, the Bash maintainer, for providing ac-
cess to early releases of Bash 4.1, and for once again reviewing
this reference. Thanks to Robert P.J. Day for reviewing this
edition. Thanks again to Mike Loukides at O’Reilly Media for
his continued support of this project.

110 | The Bash Shell

www.it-ebooks.info

http://freshmeat.net/projects/bashcompletion
http://www.opengroup.org/onlinepubs/009695399
http://oreilly.com/catalog/9780596009656
http://oreilly.com/catalog/9780596005955
http://oreilly.com/catalog/9780596005955
http://www.it-ebooks.info/

Index

Symbols
! (exclamation mark)

!= inequality operator, 37
event designators, 40
filename metacharacter, 7
logical negation operator,

36
" (quotation marks, double)

" " quoting, 10
escape sequence, 11

(hash mark), comments, 10,
55

#!shell command, 56
$ (dollar sign)

$() command
substitution, 12

$(()) arithmetic
substitution, 12

${ } variable substitution,
21

last argument, 40
shell variables, 24

variable substitution, 10
$ENV file (read by Bash shell

at startup), 6
% (percent)

argument matched by, 40
job control, 46
modulus operator, 36

& (ampersand)
&& logical AND operator,

57
background execution, 10
bitwise AND operator, 37
logical AND operator, 37

' (quotation marks, single)
escape sequence, 11
quoting, 10

() (parentheses), command
grouping, 10

* (asterisk)
** exponentiation

operator, 36
** filename

metacharacters, 7

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

111

www.it-ebooks.info

http://www.it-ebooks.info/

all arguments, 40
filename metacharacter, 7
multiplication operator,

36
+ (plus sign)

++ auto-increment
operator, 36

+= operator, 21
addition operator, 37
filename metacharacter, 7
unary operator, 36

, (comma), sequential
expression evaluation
operator, 37

- (hyphen)
-- auto-decrement

operator, 36
subtraction operator, 37
unary operator, 36

. (dot), read and execute files,
56

.bash_profile file, shell
variables, 29

.profile file, shell variables,
29

/ (slash), division operator,
36

/etc/bash_completion file, 45
/etc/passwd file, 6
/etc/profile file, 6
: (colon)

:0 command name, 40
:n argument number, 40
:… history and truncation

modifiers, 41
do-nothing command, 56

; (semicolon), command
separator, 10

< (left angle bracket), 57
<< bitwise shift left

operator, 37
<<= assignment operator,

37
less than operator, 37

< > (angle brackets),
redirection symbols,
10

= (equals sign), == equality
operator, 37

> (right angle bracket)
>= greater than or equal to

operator, 37
>> bitwise shift right

operator, 37
>>= assignment operator,

37
greater than operator, 37,

57
? (question mark)

?: inline conditional
evaluation operator,
37

filename metacharacter, 7
@ (at sign), filename

metacharacter, 7
[] (brackets)

filename metacharacters,
7

[[:word:]] filename
metacharacter, 8

[[ ]] test command, 57
\ (backslash)

escape sequence, 11
prompt strings, 35
quoting, 10, 11

\ escape sequence, 11

112 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

\" escape sequence, 11
\0 octal number escape

sequence, 72
\a escape sequence, 11, 71
\b escape sequence, 11, 71
\c escape sequence, 11, 71
\e escape sequence, 11, 71
\E escape sequence, 11
\f escape sequence, 11, 71
\n escape sequence, 11, 71
\r escape sequence, 11, 71
\t escape sequence, 11, 71
\v escape sequence, 11, 71
\x escape sequence, 11
\\ backslash escape sequence,

71
\\ escape sequence, 11
\’ escape sequence, 11
^ (caret)

bitwise exclusive OR
operator, 37

first argument, 40
` (backquote), command

substitution, 10
| (pipe character)

|| logical OR operator, 37,
57

bitwise OR operator, 37
pipe command, 55
quoting, 10

~ (tilde), filename
metacharacter, 7

A
addition operator, 37
alias command, 58
aliases, removing, 107
alnum class, 8

alpha class, 8
alphabetic characters,

filename
metacharacter, 8

alphanumeric characters,
filename
metacharacter, 8

ampersand (&)
&& logical AND operator,

57
background execution, 10
bitwise AND operator, 37
logical AND operator, 37

AND operators, 37
angle brackets (< >),

redirection symbols,
10

arguments
Bash shell, 6
job control commands, 46
printing, 71, 87
shifting command-line

arguments left, 98
arithmetic operations, let

command, 85
arithmetic operators, 36
arrays

associative arrays, 34
indexed arrays, 33
reading files into, 86, 90

asterisk (*)
** exponentiation

operator, 36
** filename

metacharacters, 7
all arguments, 40
filename metacharacter, 7

Index | 113

www.it-ebooks.info

http://www.it-ebooks.info/

multiplication operator,
36

at sign (@), filename
metacharacter, 7

attributes, shell variables, 68
auto-decrement operator, 36
auto_resume shell variable,

33

B
background jobs

putting current job into
background, 58

running or suspending, 77
backquote (`), command

substitution, 10
backslash (\)

escape sequence, 11
prompt strings, 35
quoting, 10, 11

Bash (Bourne-Again shell)
arithmetic expressions, 36
built-in commands, 55–

109
command execution, 52
command history, 37–41
coprocesses, 53
features, 3
functions, 18
history of, 3
invoking Bash shell, 4
job control, 46
options, 47–52
programmable

completion, 41–45
restricted shells, 54
syntax, 6–18
variables, 20–36

BASH shell variable, 25
BASHOPTS shell variable, 25
BASHPID shell variable, 25
.bashrc file, 6
BASH_ALIASES shell

variable, 25
BASH_ARGC shell variable,

25
BASH_ARGV shell variable,

25
BASH_CMDS shell variable,

25
BASH_COMMAND shell

variable, 26
BASH_ENV shell variable, 29
BASH_EXECUTION_STRIN

G shell variable, 26
BASH_LINENO shell

variable, 26
BASH_REMATCH shell

variable, 26
BASH_SOURCE shell

variable, 26
BASH_SUBSHELL shell

variable, 26
BASH_VERSINFO[] shell

variable, 26
BASH_VERSION shell

variable, 27
BASH_XTRACEFD shell

variable, 29
Berkeley C shell, history of, 2
bg command, 47, 58
bind command, 58
bitwise AND operator, 37
bitwise exclusive OR

operator, 37
bitwise OR operator, 37

114 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

bitwise shift left operator, 37
bitwise shift right operator,

37
blank class, 8
Bourne shell, history of, 2
brace expansion, syntax, 8
brackets []

filename metacharacters,
7

[[:word:]] filename
metacharacter, 8

[[ ]] test command, 57
break command, 60
built-in shell variables, 24
builtin command, 60

C
caller command, 60
caret (^)

bitwise exclusive OR
operator, 37

first argument, 40
carriage return escape

sequence, 11
case command, 60
case statements, esac

command, 73
cd command, 62
CDPATH shell variable, 30
cntrl class, 8
colon (:)

:0 command name, 40
:n argument number, 40
:… history and truncation

modifiers, 41
do-nothing command, 56

COLUMNS shell variable, 30

comma (,), sequential
expression evaluation
operator, 37

command command, 62
command forms, syntax, 12
command history, 37–41

C-shell–style history, 39
fc command, 39
line-edit mode, 38

command line
editor, 38
history, 76, 81
manipulation in Bash, 38
options, 79
printing arguments, 87
script parameters, 92

commands, 55–109
#!shell command, 56
: do-nothing command,

56
bg command, 47, 58
bind command, 58
break command, 60
builtin command, 60
caller command, 60
case command, 60
cd command, 62
command command, 62
compgen command, 42,

63
complete command, 42,

63
compopt command, 44,

67
continue command, 67
declare command, 68
dirs command, 69
disown command, 70

Index | 115

www.it-ebooks.info

http://www.it-ebooks.info/

do command, 70
done command, 70
echo command, 71
enable command, 72
enabling and disabling, 72
esac command, 73
eval command, 73
exec command, 74
executing, 52
exit command, 74
export command, 75
external commands, 109
false command, 75
fc command, 39, 76
fg command, 47, 77
fi command, 77
filename command, 109
for command, 77
funcname command, 42
function command, 78
getopts command, 79
hash command, 79
help command, 80
history command, 37, 81
if command, 82
job control, 46
jobs command, 47, 83
kill command, 47, 83
let command, 85
local command, 85
logout command, 85
man command, 45
mapfile command, 86
name ( ) command, 57, 58
popd command, 86
printf command, 87
pushd command, 88
pwd command, 88

read command, 89, 90
readonly command, 90
return command, 19, 91
select command, 91
set command, 92–97
shift command, 98
shopt command, 47, 98
source command, 99
stty command, 47
suspend command, 47, 99
test command, 99–102
time command, 102
times command, 102
trap command, 103
true command, 104
type command, 104
typeset command, 105
ulimit command, 105
umask command, 107
unalias command, 107
unset command, 108
until command, 108
wait command, 47, 108
while command, 109
[[ ]] test command, 57

comments, # (hash mark), 10,
55

comparisons, integers, 101
compgen command, 42, 63
complete command, 42, 63
completion facilities, 39, 41,

63
compopt command, 44, 67
COMPREPLY shell variable,

30
compspecs, programmable

completion, 42

116 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

COMP_CWORD shell
variable, 27

COMP_KEY shell variable,
27

COMP_LINE shell variable,
27

COMP_POINT shell variable,
27

COMP_TYPE shell variable,
27

COMP_WORDBREAKS
shell variable, 27

COMP_WORDS shell
variable, 27

conditions, evaluating, 99
continue command, 67
control characters, filename

metacharacter, 8
COPROC shell variable, 27
coprocesses, 53
CPU times, 102
csh (Berkeley C shell), history,

2
CTRL-Z command, 46, 47

D
DEBUG trap, 19
decimal digits, filename

metacharacter, 8
declare command, 68
declaring

shell variables, 68
variables, 105

digit class, 8
directories

changing, 62
popping directories off

directory stack, 86

pushing directories onto
directory stack, 88

working directories, 88
directory stack

popping directories off
directory stack, 86

printing or managing, 69
pushing directories onto

directory stack, 88
dirs command, 69
DIRSTACK shell variable, 27
disabling commands, 72
disown command, 70
division operator, 36
do command, 70
do-nothing command (:), 56
dollar sign ($)

$() command
substitution, 12

$(()) arithmetic
substitution, 12

${ } variable substitution,
21

last argument, 40
shell variables, 24
variable substitution, 10

done command, 70
dot (.), read and execute files,

56

E
echo command, 71
editing, keyboard shortcuts

for, 38
Emacs editor, Bash

command-line editing
mode, 38

EMACS shell variable, 30

Index | 117

www.it-ebooks.info

http://www.it-ebooks.info/

enable command, 72
ENV shell variable, 30
equals sign (=), == equality

operator, 37
ERR trap, 19
esac command, 73
escape sequence, 11
escape sequences, quoted

text, 11
EUID shell variable, 27
eval command, 73
evaluating conditions, 99
event designators, 40
exclamation mark (!)

!= inequality operator, 37
event designators, 40
filename metacharacter, 7
logical negation operator,

36
exec command, 74
executing

commands, 52
files, 56, 99
input lines, 73

exit command, 74
exit status of shell functions,

91
EXIT trap, 19
exiting

with false return values,
75

kill command, 83
shell, 85
shell scripts, 74
with a true return value,

104
exponentiation operator, 36
export command, 75

expressions, arithmetic, 36

F
false command, 75
fc command, 39, 76
FCEDIT shell variable, 30
fg command, 47, 77
fi command, 77
FIGNORE shell variable, 30
filename command, 109
filenames

metacharacters, 7
redirection forms, 17

files
creation mask, 107
evaluating conditions, 99
reading and executing, 56,

99
reading into arrays, 86, 90

for command, 77
form feed escape sequence,

11
forms, combined forms, 101

(see also redirection forms)
funcname command, 42
FUNCNAME shell variable,

28
function command, 78
functions

about, 18
defining, 57
exit status of, 91
getpwnam() function, 6
getpwuid() function, 6
removing, 108
traps, 19

118 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

G
getconf command, 78
getopts command, 79
getpwnam() function, 6
getpwuid() function, 6
GLOBIGNORE shell variable,

30
graph class, 8
greater than operator, 37
greater than or equal to

operator, 37
GROUPS shell variable, 28

H
hash command, 79
hash mark (#), comments, 10,

55
help command, 80
here document, 14
here string, 14
hexadecimal escape sequence,

11
histchars shell variable, 33
HISTCMD shell variable, 28
HISTCONTROL shell

variable, 30
HISTFILE shell variable, 30
HISTFILESIZE shell variable,

30
HISTIGNORE shell variable,

30
history

command history, 37–41,
76, 81

history modifiers, 41
history command, 37, 81
HISTSIZE shell variable, 31

HISTTIMEFORMAT shell
variable, 31

HOME shell variable, 31
HOSTFILE shell variable, 31
HOSTNAME, 28
HOSTTYPE shell variable, 28
hyphen (-)

-- auto-decrement
operator, 36

subtraction operator, 37
unary operator, 36

I
if statement, 77, 82
IFS shell variable, 31
IGNOREEOF shell variable,

31
indexed arrays, 33
indirect variables, 23
inequality operator, 37
inline conditional evaluation

operator, 37
input lines, rescan or execute,

73
INPUTRC shell variable, 31
integers, comparisons, 101
interpreters, invoking, 56
invoking

Bash shell, 4
interpreters, 56

J
job control, 46
jobID argument, 46
jobs

background jobs, 58, 77
list running or stopped

jobs, 83

Index | 119

www.it-ebooks.info

http://www.it-ebooks.info/

stop managing, 70
stopping, 83
wait command, 108

jobs command, 47, 83

K
keyboard shortcuts for

editing, 38
kill command, 47, 83

L
LANG shell variable, 31
LC_ALL shell variable, 31
LC_COLLATE shell variable,

31
LC_CTYPE shell variable, 31
LC_MESSAGES shell

variable, 31
LC_NUMERIC shell variable,

31
LC_TIME shell variable, 31
left angle bracket (<), 57

<< bitwise shift left
operator, 37

<<= assignment operator,
37

<= less than or equal to
operator, 37

less than operator, 37
less than operator, 37
less than or equal to operator,

37
let command, 85
line-edit mode (command

history), 38
LINENO shell variable, 28
LINES shell variable, 31
/bin/sh, link to Bash, 4

local command (local
variables), 85

logical AND operator, 37
logical negation operator, 36
logical OR operator, 37
logout command, 85
loops

breaking out, 60
continuing, 67
do command, 70
done command, 70
for command, 77
until command, 108
while command, 109

lower class, 8
lowercase characters,

filename
metacharacter, 8

M
MACHTYPE shell variable,

28
MAIL shell variable, 31
MAILCHECK shell variable,

32
MAILPATH shell variable, 32
man command, 45
mapfile command, 86
MAPFILE shell variable, 28
masks, file creation mask,

107
metacharacters, Bash shell

filenames, 7
modulus operator, 36
multiple redirection, 15
multiplication operator, 36

120 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

N
name ( ) command, 57
newline escape sequence, 11
newline word separator, 10
nonspace characters, filename

metacharacter, 8

O
octal value escape sequence,

11
OLDPWD shell variable, 28
operators

+= operator, 21
arithmetic operators, 36

OPTARG shell variable, 28
OPTERR shell variable, 32
OPTIND shell variable, 28
OR operators, 37
OSTYPE shell variable, 28

P
parentheses (), command

grouping, 10
PATH shell variable, 32
percent (%)

argument matched by, 40
job control, 46
modulus operator, 36

pipe character (|)
bitwise OR operator, 37
pipe command, 55
|| logical OR operator, 37,

57
PIPESTATUS shell variable,

28
plus sign (+)

++ auto-increment
operator, 36

+= operator, 21
addition operator, 37
filename metacharacter, 7
unary operator, 36

popd command, 86
POSIXLY_CORRECT shell

variable, 32
postfix texts (brace

expansion), 9
PPID shell variable, 28
prefix texts (brace expansion),

9
printable characters, filename

metacharacter, 8
printf command, 87
printing

command usage
information, 80

command-line history, 81
working directories, 88

process substitution, 16
.profile file, 6
programmable completion,

41–45
prompt strings, 35
PROMPT_COMMAND shell

variable, 32
PROMPT_DIRTRIM shell

variable, 32
PS1-PS4 shell variable, 32
punctuation characters,

filename
metacharacter, 8

pushd command, 88
pwd command, 88
PWD shell variable, 28

Index | 121

www.it-ebooks.info

http://www.it-ebooks.info/

Q
question mark (?)

?: inline conditional
evaluation operator,
37

filename metacharacter, 7
quotation marks, double (")

" " quoting, 10
escape sequence, 11

quotation marks, single (')
escape sequence, 11
quoting, 10

quoting, syntax, 10

R
RANDOM shell variable[],

28
read command, 89
readarray command, 90
reading, files, 56, 86, 99
readline library, bindings, 58
READLINE_LINE shell

variable, 28
READLINE_POINT shell

variable, 28
readonly command, 90
redirection forms, 13–18

multiple redirection, 15
process substitution, 16
redirection using file

descriptors, 15
simple redirection, 14
special filenames, 17

referencing arrays, 34
removing

aliases, 107
functions, 108

variables, 108
REPLY shell variable, 28
rescanning input lines, 73
resources, 109
restricted shells, 54
return command, 19, 91
RETURN trap, 19
return values

exiting with a true return
value, 104

exiting with false, 75
right angle bracket (>)

>= greater than or equal to
operator, 37

>> bitwise shift right
operator, 37

>>= assignment operator,
37

greater than operator, 37,
57

S
scripts

command-line
parameters, 92

exiting, 74
replacing, 74
signals, 103

select command, 91
semicolon (;), command

separator, 10
set command, 92–97
sh, invoking Bash as, 4
SHELL shell variable, 33
SHELLOPTS shell variable,

29
shells, 3

(see also Bash)

122 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Bourne shell, 2
declaring variables, 68
evaluating conditions, 101
invoking Bash shell, 4
managing options, 98
options, 47–52, 92
restricted shells, 54
suspending, 99

shift command, 98
SHLVL shell variable, 29
shopt command, 47, 98
signal-based traps, 19
signals, shell scripts, 103
slash (/), division operator,

36
source command, 99
space character, filename

metacharacter, 8
space word separator, 10
stacks, directory stack, 69, 86,

88
standard error, redirection

forms, 13
standard input, redirection

forms, 13
standard output, redirection

forms, 13
stopping jobs, 83

(see also exiting)
strings

completions, 63
default variable value, 20
evaluating conditions, 100
prompt strings, 35

stty command, 47
substitution

PS1-PS4 variables, 36
variables, 21

word substitution, 40
subtraction operator, 37
suspend command, 47, 99
syntax, 6–18

Bash arguments, 6
brace expansion, 8
command forms, 12
filename metacharacters,

7
quoting, 10
redirection forms, 13–18
special files, 6

System V, Bourne shell, 2

T
tab character, filename

metacharacter, 8
tab escape sequence, 11
tab word separator, 10
TERM, 33
test command, 57, 99–102
tilde (~), filename

metacharacter, 7
time command, 102
TIMEFORMAT shell

variable, 33
times command, 102
TMOUT shell variable, 33
TMPDIR shell variable, 33
trap command, 103
traps, list of, 19
true command, 104
truncation modifiers, 41
type command, 104
typeset command, 105

U
UID shell variable, 29

Index | 123

www.it-ebooks.info

http://www.it-ebooks.info/

ulimit command, 105
umask command, 107
unalias command, 107
unary operator, 36
unset command, 108
until command, 108
uppercase characters,

filename
metacharacter, 8

V
variables, 20–36

arrays, 33
assignment, 20
built-in shell variables, 24
declaring, 68, 105
exporting or printing info

about, 75
local variables, 85
other shell variables, 29
prompt strings, 35
read-only, 90
reading, 89
removing, 108
substitution, 21

vertical tab escape sequence,
11

vi editor, line-edit mode, 38

W
wait command, 47, 108
while command, 109
whitespace characters,

filename
metacharacter, 8

word substitution, 40

working directories, printing,
88

124 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Chapter 1. The Bash Shell
	Conventions
	History
	Overview of Features
	Invoking the Shell
	Options
	Arguments

	Syntax
	Special Files
	Filename Metacharacters
	Examples

	Brace Expansion
	Examples

	Quoting
	Examples

	Command Forms
	Examples

	Redirection Forms
	Simple redirection
	Redirection using file descriptors
	Multiple redirection
	Process substitution
	Special filenames
	Examples

	Functions
	Variables
	Variable Assignment
	Variable Substitution
	Examples

	Built-in Shell Variables
	Other Shell Variables
	Arrays
	Indexed arrays
	Associative arrays

	Special Prompt Strings

	Arithmetic Expressions
	Operators
	Examples

	Command History
	Line-Edit Mode
	Common editing keystrokes

	The fc Command
	Examples

	C-Shell–Style History
	Event designators
	Word substitution
	History modifiers

	Programmable Completion
	Examples

	Job Control
	Shell Options
	Command Execution
	Coprocesses
	Example

	Restricted Shells
	Built-in Commands
	!
	#
	#!shell
	:
	.
	[[ ]]
	name ()
	alias
	bg
	bind
	break
	builtin
	caller
	case
	cd
	command
	compgen
	complete
	compopt
	continue
	declare
	dirs
	disown
	do
	done
	echo
	enable
	esac
	eval
	exec
	exit
	export
	false
	fc
	fg
	fi
	for
	for
	function
	getopts
	hash
	help
	history
	if
	jobs
	kill
	let
	local
	logout
	mapfile
	popd
	printf
	pushd
	pwd
	read
	readarray
	readonly
	return
	select
	set
	shift
	shopt
	source
	suspend
	test
	time
	times
	trap
	true
	type
	typeset
	ulimit
	umask
	unalias
	unset
	until
	wait
	while
	filename

	Resources
	Online Resources
	Books

	Acknowledgments

	Index

